Job Creation Tax Credits and Job Growth:

Evidence from U.S. States

Robert S. Chirinko and Daniel J. Wilson*

February 2014

PRELIMINARY DRAFT
PLEASE DO NOT CIRCULATE OR QUOTE WITHOUT AUTHORS’ PERMISSION

For Presentation at the Italian Ministry of Economy and Finance

April 1, 2014

* Acknowledgements: We would like to acknowledge the excellent research assistance provided by Katherine Kuang, Charles Notzon, Tom O’Conner, and the comments and suggestions from seminar/conference participants at the American Economic Association, CESifo, Econometric Society, European Central Bank, Federal Reserve Bank of San Francisco, Federal Reserve System Committee on Regional Analysis, Institute for Advanced Studies (Vienna), International Institute for Public Finance, IZA, National Tax Association, North American Regional Science Association, University of Illinois at Chicago, and the Upjohn Foundation, especially our formal discussants, Tim Bartik, Elliott Dubin, Leo Feler, Yolanda K. Kodrzycki, and Tuomas Kosnen. Financial support from the Federal Reserve Bank of San Francisco and the Upjohn Foundation is gratefully acknowledged. All errors and omissions remain the sole responsibility of the authors, and the conclusions, based on the preliminary analysis contained in this paper, do not necessarily reflect the views of the organizations with which they are associated.

Corresponding Author
Robert S. Chirinko
Department of Finance
2333 University Hall
University of Illinois at Chicago
601 South Morgan (MC 168)
Chicago, Illinois 60607-7121
PH: 312 355 1262
FX: 312 413 7948
EM: Chirinko@uic.edu

Daniel J. Wilson
Federal Reserve Bank of San Francisco
Mail Stop 1130
101 Market Street
San Francisco, CA 94105
PH: 415 974 3423
FX: 415 974 2168
EM: Daniel.Wilson@sf.frb.org
Job Creation Tax Credits and Job Growth:
Evidence from U.S. States

Abstract

An unemployment rate remaining unacceptably high and monthly job gains barely keeping pace with labor force growth have generated discussions about innovative fiscal policy instruments, such as job creation tax credits (JCTCs), to help stimulate labor demand. This paper studies the effects of JCTCs enacted by U.S. states over the past 20 years. Twenty-three states have adopted JCTCs, and their experiences provide a rich source of information for assessing the effectiveness of such policies. We investigate whether JCTCs affect employment growth before, at, and after the time they go into effect. These questions are investigated in an event study framework applied to monthly panel data on employment, the JCTC effective and legislative dates, and various controls. We find that the employment response to JCTCs depends importantly on whether the credit is anticipated in advance. Anticipated credits tend to have perverse negative effects during the anticipation period and then relatively large positive effects immediately after the credit goes into effect. In contrast, unanticipated credits tend to have positive but relatively modest near-term effects. Based on the sample of unanticipated credits, we find that the JCTC elasticity of employment is 0.28. This estimate suggests that President Obama’s recently proposed JCTC would create 280,000 more jobs and would lower the unemployment rate by 0.1 percentage points.

Keywords: Job creation tax credits, state business tax incentives, spatial externalities, anticipation effects, fiscal foresight, implementation lags

JEL codes: H25, H32, J23
Job Creation Tax Credits and Job Growth:

Evidence from U.S. States

Table Of Contents needs to be verified

Abstract

1. Introduction

2. Some Initial Empirical Explorations

3. Theoretical Framework
 A. Optimization Problem
 B. First-Order Conditions
 C. Steady-State
 D. Responses To A JCTC: No Rolling Base; No Inventory Costs
 E. Responses To A JCTC: No Inventory Costs
 F. Responses To A JCTC: General Model
 G. Immediate-JCTC vs. Delayed-JCTC Regimes

4. Data
 A. Job Creation Tax Credits (JCTCs)
 1. Identifying And Dating
 2. Valuing
 3. The General Design
 B. Employment And Other Data

5. Empirical Preliminaries And Specification Issues
 A. Understanding JCTC Adoption
 B. Properties Of The Monthly Employment Data
 C. Specification Of The Estimating Equation

6. Empirical Results
 A. Baseline Estimates
 B. Robustness
 C. Extensions

7. Prior Literature And Policy Implications
 A. Prior Literature
 B. Policy Implications

8. Conclusions / References / Glossary / Figures / Tables
Job Creation Tax Credits and Job Growth:
The Experience of the U.S. States

Virtually since the Great Recession began, many economists have suggested offering businesses a tax credit for creating new jobs. While details matter, the basic idea is straightforward: Offer tax breaks to firms that boost their payrolls.

Blinder (2013)

1. Introduction

The recent U.S. recession and its aftermath took a heavy toll on nearly all aspects of the economy. Perhaps nowhere was the toll been greater than on the labor market. As of four years after the official end of the recession, the unemployment rate remains unacceptably high and well above estimates of the natural rate.¹ This stubbornly high unemployment rate has generated discussions about innovative fiscal policy instruments, such as job creation tax credits (JCTCs), to help stimulate labor demand. In fact, such discussions began early in the recession and have continued in the midst of the slow recovery, per the above quotation from Blinder. For example, Bartik and Bishop (2009) argued that a “well-designed temporary federal job creation tax credit should be an integral part of the effort to boost job growth.” A temporary and narrowly-targeted federal JCTC was adopted in early 2010 and a more substantial measure was proposed more recently by President Obama.²

¹ In a recent study, Daly, Hobijn, Şahin and Valletta (2012) estimate that the natural rate of unemployment is approximately 6.0%.

² The 2010 JCTC was part of the Hiring Incentives to Restore Employment (HIRE) Act. Only jobs created from the pool of unemployed workers qualified for this credit of 6.2% of wages paid over 52 consecutive weeks of employment. (The HIRE Act also contained a social security tax exemption for employers.) A more substantial JCTC was part of President Obama’s 2011 proposed American Jobs Act and offered a tax credit of $4,000 for hiring long-term unemployed workers.
While targeted federal tax credits such as the 2010 policy have been enacted in the past, broad-based JCTCs have been tried only once before at the U.S. federal level. The New Jobs Tax Credit (NJTC; see Ashenfelter, 1978b and Sunley, 1980) was in effect from 1977 to 1978 and offered corporations a credit whose value was proportional to the increase in the corporation’s net payroll level above 102% of its previous year’s level. Using survey data, Perloff and Wachter (1979) found that employment growth from 1976 to 1977 was 3.00% higher for firms which reported knowing about the credit compared with other firms. Bishop (1981) also studied the employment effects of the NJTC and found that it increased employment in the Construction, Trucking, Wholesale, and Retail sectors in 1977-1978 by between 0.66% and 2.95%.

Although the federal government’s experience with broad-based JCTCs is quite limited, this policy has been pursued by many U.S. states. Nearly half of U.S. states have enacted broad-based JCTCs over the past twenty years. Chart 1 shows the policy diffusion process over time for these state JCTCs (based on the legislative enactment dates that we compiled for this paper). The first of these credits were adopted in late 1992 and, by August 2009, 23 states had adopted such a credit.3

Chart 2 shows the geographical distribution of JCTC adoptions. The plurality of JCTC states are in the eastern United States, but there are also many in the Midwest and South. The

3 Here and throughout the paper we focus on JCTCs that are “broad” in the sense that they apply to employers in a wide range of industries, in all parts of the state, and without substantial non-employment-based requirements. Neumark and Grivalja (2013) document that many states additionally have narrow hiring credits targeted at particular industries (such as biotechnology, information technology, or motion pictures), particular areas of the state (“enterprise zones”), or particular actions (such as headquarters relocation, facilities expansion, or research and development).
design of these JCTCs varies among states (discussed in Section 4). The monetary value of the JCTCs varies substantially among.

An important element in this paper is the creation of a comprehensive database on JCTCs. We compile the relevant legislative dates for all state JCTCs that have been passed in the U.S. since 1990. For each JCTC, we have identified two key dates: (1) the “signing” date on which the legislation is signed into law by the state’s governor and (2) the “qualifying” date on or after which net new hires by an in-state employer can qualify for the credit. (These and other terms are defined in the glossary.) The relation between signing and qualifying dates defines two JCTC regimes that may exhibit different employment responses. When the qualifying date occurs after the signing date, employers can perfectly anticipate the forthcoming decline in the effective wage and hence have an incentive to initially decrease employment during this implementation period and then increase it sharply at the qualifying date. We refer to this potential negative effect during the implementation period as an Anticipatory Dip. This is an example of a more general phenomenon of agents altering current behavior due to “fiscal foresight” of policy changes has been the subject of recent debate in macroeconomics.4 States whose JCTCs have an implementation period are classified as being delayed JCTC states. Alternatively, the qualifying date may occur at or before the signing date. We classify these states as immediate JCTC states. We combine this JCTC information with monthly data on employment from January 1990 to August 2009 to investigate the average effect of job tax credits on employment growth before, at, and after the qualifying date for each of the two sets of

4 Auerbach and Gale (2009), Ramey (2011), Leeper, Richter, and Walker (2012), and Mertens and Ravn (2012), among other studies, find a significant impact of fiscal foresight. Perotti (2012), on the other hand, finds no evidence of anticipation effects in advance of pre-announced tax changes.
We can thus assess whether JCTCs succeed in stimulating local job growth, the cost per job created, and biases created by the Anticipatory Dip.

Our paper proceeds as follows. Section 2 presents an initial empirical exploration of employment growth before and after the month in which firms qualify for the JCTC. We document that employment growth rises when firms become eligible for JCTCs and that, consistent with fiscal foresight, the increase is larger for delayed-JCTC states and is preceded by an Anticipatory Dip. Section 3 contains a theoretical framework for understanding the effects of a JCTC and analyzes the intertemporal decisions faced by a firm. Several empirical predictions are generated and the preconditions for Anticipatory Dips are highlighted. Moreover, the theoretical framework provides guidance in correctly measuring the magnitude of the monetary incentive imparted by JCTCs. Section 4 (and the Glossary) describes the unique dataset that we have collected on state JCTCs. Section 5 undertakes some preliminary empirical analyses, examining the factors leading to JCTC adoption and the statistical properties of the monthly employment data. Based on these empirical results, we specify an estimating equation that delivers consistent estimates of the response of employment growth to JCTCs. Section 6 discusses our main empirical results, as well as several robustness checks and extensions. Section 7 relates our results to the thin extant literature on job tax credits and considers policy implications. Section 8 concludes and highlights remaining research questions.
2. Some Initial Empirical Explorations

Before proceeding to a detailed econometric analysis of JCTCs, we undertake a simple event study, comparing employment growth averaged over N months before and after a JCTC event. We define a JCTC event as the first month in which both new employment can qualify for the credit and the credit legislation has been enacted into law. The event window is defined by N, which is either 1, 6, 12, or 24 months. The scatterplots in Chart 3 show employment growth before (on the horizontal axis) and after (on the vertical axis) these JCTC events. States with a delayed JCTC – where the credit becomes effective one or more months after it is enacted into law – are colored orange/grey; states with an immediate JCTC – where the credit becomes effective immediately upon enactment – are colored black. The solid line in each scatterplot is a 45 degree line. If there is an increase in state employment growth at and after the event date, the data point for that state will lie above the 45 degree line.

Chart 3 documents that employment growth tends to be higher after a JCTC becomes effective. This pattern appears to weaken somewhat as the event window is lengthened. The response to the JCTC is larger, especially in the shorter window, for delayed-JCTC states than immediate-JCTC states, suggesting the empirical importance of Anticipatory Dips.

We compare the pre-to-post JCTC employment growth between states that differ in terms of key discrete characteristics of the credits: nonrefundability (the employer cannot receive a refund if the value of the credit exceeds its tax liability), pre-approval (by a state agency), or capped (the total amount of the tax credit is restricted either by a state-wide or single-taxpayer limit). Each of these characteristic potentially lowers the value of the credit. Consequently, states whose JCTC has one of these characteristics are expected to have lower relative employment growth. The results, based on N=6 months, are shown in Appendix A. Of the three
characteristics, the only one in which there is a clear relative difference in the pre-to-post JCTC employment growth is nonrefundability. Formal difference-in-difference t-tests confirm the visual impression: the pre-to-post JCTC average employment growth difference is 0.10 percentage points lower for states in which the credit is nonrefundable; the difference is statistically significant with a p-value of 0.056.

This preliminary analysis suggests that JCTCs positively affect employment growth over the short-term, especially for delayed JCTC states. However, a more complete analysis needs to condition on potential confounding factors and must also assess the extent to which the higher short-term impact of JCTC in delayed regimes comes at the cost of any negative Anticipatory Dips in employment prior to the tax credit’s effective date. We begin the exploration of the latter in terms of the theoretical model developed in the next section.
3. Theoretical Framework

This section presents a dynamic model of the firm that provides guidance about the patterns of policy-response coefficients we should expect from a forward-looking firm facing a JCTC. We begin by defining the firm’s cash flows and the constraints that it faces. The first-order conditions (FOCs) characterizing optimal behavior are examined. These determine the steady-state values for three real variables – labor, output, and sales, as well as the transition behavior in the face of a policy stimulus. The adoption of a JCTC is then analyzed in three models of increasing generality in terms of the responses of the real variables away from the steady-state. We focus on the delayed JCTC regime, which contains an implementation period between signing and qualifying months, highlight several empirical implications and identify the three key conditions necessary for the emergence of Anticipatory Dips.

A. Optimization Problem

Cash flow in period \(t \) is composed of four elements. First, revenues \((\text{REV}_t) \) accrue to the firm from sales \((S_t) \) in a market where the firm may have market power \((P_t = P[S_t], P'[S_t] \leq 0) \).

The demand curve is linear with slope \((-\beta/2) \) and a constant term equal to \((1+\beta)\). The linearity assumption is made for convenience; the parametric restriction as a simple device for assuring that, in the steady-state (SS), the firm faces an elastic demand curve for any value of \(\beta \),

\[
\text{REV}[S_t] = P_t * S_t = \alpha * S_t - (\beta/2) * S_t^2, \quad (1a)
\]

\[
\alpha = 1 + \beta, \quad (1b)
\]

\[
\frac{dS_t}{dP_t S_{t,SS}} = \left(\frac{1 + 2/\beta}{1 + 2/\beta} \right) > 1, \quad 0 < \beta < \infty, \quad (1c)
\]
where we assume in equation (1c) that the steady-state value of S_t equals one (an assumption verified in Section 3.C).

Second, labor is the only factor of production, and production cost ($COST_t$) is the product of an exogenous wage (w) and labor input (L_t),

$$COST[L_t] \equiv w \cdot L_t.$$ \hspace{1cm} (2)

Third, the firm smooths production intertemporally by adjusting the end-of-the-period inventory stock (I_t). The firm has a target inventory-to-sales ratio (ζ) that is given exogenously. Deviations from this target result in the following quadratic cost,

$$f[I_{t-1}, S_t] \equiv (\mu / 2) \cdot (I_{t-1} - \zeta \cdot S_t)^2 \quad \mu \geq 0.$$ \hspace{1cm} (3)

Such a cost is standard in the inventory literature (cf., Ramey and West (1999, equation 3.1)) and represents inventory holding and stockout costs. If $f[.]$ is linear, $\zeta = 0$, and $(\mu / 2)$ equals the cost of borrowed funds, then equation (3) would represent the carrying cost of inventory.

Fourth, the firm receives a job creation tax credit equal to the product of the legislated tax credit rate (τ_t), the wage rate, and the level of credit-qualifying employment. For the state credits in our sample, credit-qualifying employment is current employment, L_t, minus employment in the previous period, L_{t-1} (or averaged over several previous). Because the previous period is not a fixed interval at a point in time but rather a window that moves forward in time with employment, this type of credit is known as a “rolling base” credit. The rolling base feature of these credits has important implications on the incentives from and the cost of tax credit programs. These implications are examined in subsection E below. Here we assume a rolling base and the tax credit received by the firm is defined as follows,

$$g[L_t, L_{t-1} : \tau_t] \equiv \tau_t \cdot w \cdot (L_t - BASE_t),$$ \hspace{1cm} (4a)
The tax credit rate is noted explicitly in equation (4a) as a conditioning variable given its central role in the subsequent analysis.

In maximizing cash flow qua profits over the planning period, the firm faces production function, inventory accumulation, and isoperimetric constraints. The production function depends only on labor,5

$$Q_t = L_t^{(1/\delta)} \quad \delta > 1,$$ \hspace{1cm} (5)

where the returns to labor are decreasing and $\delta > 1$. The latter property is required for satisfying the second-order conditions (cf. fn. xx) and the uniqueness of the steady-state (cf. fn. xx). The end-of-period inventory stock is accumulated according to the following recursive equation,

$$I_t = Q_t - S_t + I_{t-1}. \quad \hspace{1cm} (6)$$

Equation (6) will be appended to the optimization problem with a time-varying shadow price, θ_t.

The final constraint concerns the inventory stock at the end of the planning period. The firm begins the planning period with an inventory stock, I_0. If left unconstrained, the firm will end the planning period at time T with the inventory stock completely depleted, and some of its profit will be illusory. To avoid this extreme inventory drawdown that would distort profits and employment decisions, we require that $I_T = I_0$, which, after repeated substitution with equation (6), is equivalent to the following isoperimetric constraint,

$$I_T - I_0 = 0 = \sum_{t=1}^{T} (Q_t - S_t). \quad \hspace{1cm} (7)$$

5 This formulation of the production function is consistent with a constant returns-to-scale production function with labor and a fixed factor as arguments, where the latter is normalized to one and fixed during the length of the period over which we evaluate the impact of the JCTC.
The constraint in equation (7) will be appended to the optimization problem with a time-invariant shadow price, ϕ. In combination with the downward-sloping demand curve, this constant shadow price of output plays a critical role in the intertemporal allocation of labor, output, and sales for a firm facing a delayed JCTC, and they are necessary conditions for the emergence of Anticipatory Dips.

Combining the four relations defining cash flow (CF_t), discounting CF_t by a constant discount factor (R^t depending on a constant discount rate ρ), assuming that cash flows accrue at the end of the period, substituting L_t for Q_t with equation (5), and appending the two constraints, we write the dynamic optimization problem as follows,

$$
\Pi_0 = \max_{\{L_t, S_t, I_t\}} \sum_{t=1}^{T} R^t \left\{ CF[L_t, S_t, I_{t-1}, L_{t-1} : \tau_t] + \theta_t \left(I_t - L_t^{(1/\delta)} + S_t - I_{t-1} \right) + \phi \sum_{t=1}^{T} \left(L_t^{(1/\delta)} - S_t \right) \right\},
$$

(8a)

$$
R^t \equiv (1 + \rho)^{-t} \quad \rho > 0,
$$

(8b)

$$
CF[L_t, S_t, I_{t-1}, L_{t-1} : \tau_t] \equiv \left(\text{REV}[S_t] - \text{COST}[L_t] - f[I_{t-1}, S_t] + g[L_t, L_{t-1} : \tau_t] \right).
$$

(8c)

B. First Order Conditions

The firm maximizes discounted cash flows by appropriate choices of labor, sales, and the inventory stock. Given the inventory accumulation constraint, the latter variable is predetermined by the choices of labor and sales, and it could be eliminated from equation (8) with equation (6). We include I_t explicitly in equation (8) to facilitate the interpretation of the first-order conditions. We begin with the perturbation of equation (8) with respect to I_t,

\[I_t : \quad -R \ast \mu (I_t - \zeta \ast S_{t+1}) + \theta_t - R \ast \theta_{t+1} = 0, \quad (9a) \]

\[\Rightarrow \quad \theta_t = \sum_{s=0}^{T} R^{1-s-1} \mu (I_{t+s} - \zeta \ast S_{t+s+1}). \quad (9b) \]

Equation (9a) is a first-order difference equation in \(\theta_t \). It can be solved by recursive substitution for \(\theta_{t+s} \) and by imposing the terminal condition that that \(\theta_t \) equals zero (discussed below). This solution is presented in equation (9b) and defines \(\theta_t \) as the shadow price of adding a unit of inventory in period \(t \) and keeping that unit in inventory until period \(T \). If in period \(t \), the inventory stock exceeds its target level \((I_{t+s} - \zeta \ast S_{t+s+1} > 0, \forall s = 0, T)\), an addition to inventory aggravates the imbalance, is costly to the firm, and \(\theta_t > 0 \). These incremental costs are increasing in \(\mu \) and are discounted by \(R \). If in period \(t \), the inventory stock is below its target level, then the additional unit is beneficial to the firm, the incremental cost is negative, and \(\theta_t < 0 \). In the steady-state, the inventory stock equals its target level, the inventory imbalance is zero, and \(\theta_t = 0 \).

The key decisions made by the firm concern labor and sales. The first-order condition for the choice of labor is as follows,

\[L_t : \quad w \ast (1 - \tau_t + \tau_{t+1} \ast R) + \theta_t \ast \left(\frac{L_t^{(1-\delta)/\delta}}{\phi} \right) = \phi \ast \left(\frac{L_t^{(1-\delta)/\delta}}{\delta} \right), \quad (10a) \]

\[\Rightarrow \quad MPL[L_t] = \frac{w^\text{EFF}}{\phi - \theta_t}, \quad w^\text{EFF} \equiv w \ast (1 - \tau_t + \tau_{t+1} \ast R), \quad (10b) \]

6 If the cash flow term defined in equation (8c) had included an inventory carrying cost \((c \ast I_{t-1})\), this additional cost term would have merely redefined \(\theta_t \). Inventory carrying costs would enter equation (9a) as \(-R \ast c\) and, in this case, equation (9b) would contain an additive constant multiplied by the discount factor.

7 We assume that the inventory imbalance is reduced monotonically to zero. Given the quadratic specification, inventory imbalances of either sign are penalized, and it would be unnecessarily costly for the firm to overshoot the steady-state value.
MPL[L_t] ≡ (1/δ) * L^{(1-δ)/δ}

\[L_t = \left(\frac{\phi - \theta_t}{\delta * w_{EFF}} \right)^{(\delta/(\delta-1))}, \]

(10c)

\[Q_t = \left(\frac{\phi - \theta_t}{\delta * w_{EFF}} \right)^{(1/(\delta-1))}. \]

(10d)

The two terms on the left side of equation (10a) define the total cost from hiring an incremental worker (and hence producing an incremental unit of output). The first term reflects labor costs represented by the effective wage rate, w_{EFF}, which is equal to the sum of the cost of hiring labor (w) less the tax credit received in period t ($-w^*\tau_t$) and, owing to the rolling base feature of the tax credit (discussed in more detail in sub-section E), plus the tax credit that will not be received in period $t+1$ ($w^*\tau_{t+1}^*R$). Taken together, these latter two terms form the effective tax credit rate that differs markedly from the legislated tax credit rate, τ. The second term is the cost of adding to an inventory imbalance. If θ_t is positive due to a positive inventory imbalance, incremental output from a new hire increases the imbalance and is costly to the firm. These incremental costs are equal to the benefit from an additional hire, which is represented by the term on the right side of equation (10a). This term is the constant shadow price of output, ϕ, multiplied by the marginal product of labor.

These relations are rearranged into a more concise expression in equation (10b), which shows that labor is optimally chosen such that its marginal product equals labor’s effective wage rate “deflated” by the true price of output, which is its shadow price net of any inventory imbalance cost. Equation (10c) is a rearrangement of equation (10b) and relates L_t to the
production function parameter, shadow prices, and the effective wage rate. Equation (10d) is the corresponding expression for Q_t.

The second key choice by the firm concerns sales with the following first-order condition,

$$tS:\quad \left(\alpha - \beta * S_t\right) + \mu * \zeta (I_{t-1} - \zeta * S_t) + \theta_t = \phi,$$

(11a)

$$\Rightarrow S_t = \frac{\alpha + \mu * \zeta * I_{t-1} + \theta_t - \phi}{\beta + \mu * \zeta^2}.$$

(11b)

Equation (11a) is a perturbation of equation (8) that impacts cash flow in three ways. The first term in equation (11a) is the marginal revenue, which decreases in the level of sales because of the downward-sloping demand curve. The second term reflects the cash flow from a change in the target and depends on the sign of the inventory imbalance. An increase in sales (and hence the target level of inventory) reduces a positive imbalance and adds to cash flow. The impact is negative when the inventory imbalance is negative. Note that this effect disappears if the target level is zero ($\zeta = 0$). The third term is the shadow price of inventory imbalances. The shadow price’s impact on an incremental sale is opposite to its impact on labor because Q_t dependent on L_t and S_t have opposite but numerically identical effects on the inventory stock. If this cost is positive due to a positive inventory imbalance, an incremental sale reduces the imbalance and increases cash flow. These three terms define the total cash flow from an incremental sale and, under profit-maximization, equal the constant shadow price of output, ϕ. Equation (11b) is a rearrangement of equation (11a) that relates S_t to demand curve parameters, the predetermined inventory stock, and shadow prices.

Lastly, perturbations of the shadow prices yield the per-period inventory accumulation constraint and the planning-period isoperimetric constraint, respectively,
$\theta_t: \quad I_t = I^{(1/\delta)}_t - S_t + I_{t-1},$ \hspace{1cm} (12)

$\phi: \quad \sum_{t=1}^T \left(I_t^{(1/\delta)} - S_t \right) = 0,$ \hspace{1cm} (13)

C. Steady-State.

These first-order conditions form the basis of our analysis of the steady-state and transition associated with a delayed JCTC. In this sub-section, we analyze a steady-state defined by two characteristics: the inventory stock equaling its target value ($I_{ss} = \zeta * S_{ss}$) and sales equaling output ($S_{ss} = Q_{ss}$). The first characteristic implies that $\theta_{ss} = 0$ and that sales and output given by equations (10d) and (11b), respectively, can be written as follows,8

$$Q_{ss} = \left(\frac{\phi_{ss}}{\delta * w_{ss}^{EFF}} \right)^{(1/(\delta-1))},$$ \hspace{1cm} (14)

$$S_{ss} = \frac{\alpha - \phi_{ss}}{\beta}.$$ \hspace{1cm} (15)

In order to analyze how variables respond to the introduction of a JCTC, we consider an initial steady state in which there is no JCTC, and hence $w_{ss}^{EFF} = w$. In order to form baseline values, we adopt the normalization that $w = (1/\delta) < 1$. The second characteristic implies the following solution for the shadow price of output,

$$Q_{ss} = S_{ss} \rightarrow h[\phi_{ss}] = 0 \rightarrow \phi_{ss} = 1,$$ \hspace{1cm} (16a)

8 In the steady-state, the second-order conditions can be verified. The matrix of second derivatives for L and S is as follows,

$$\begin{bmatrix}
(1-\delta)/\delta & 0 \\
0 & -\beta
\end{bmatrix},$$

which is negative definite for $\delta > 1$. Note that the first-order condition for I_t vanishes in the steady-state.
The unique solution to equation (16) is $\phi_{SS} = 1$. With this value for the shadow price of output, $S_{SS} = Q_{SS} = L_{SS} = 1$. The critical result here is that the optimal choice of labor in the initial steady state is 1. Therefore, any deviations from 1 reflect the effects of introducing a JCTC.

D. Responses To A JCTC: No Rolling Base; No Inventory Costs

We now examine the firm’s responses to the introduction of a JCTC. In order to highlight three different channels of influence, we will examine in this sub-section a special case of the model in which the JCTC does not have a rolling base and the inventory technology is costless. Sub-section E reintroduces the rolling base. Sub-section F contains a general model with the rolling base and costly inventory.

In anticipation of the empirical analysis, we divide the timeline for a delayed JCTC into three intervals:

BEFORE: The months between the signing date and the qualifying date.

AT: The month containing the qualifying date.

AFTER: The months after the qualifying date. The AFTER interval will be further divided into AFTER-EARLY and AFTER-LATE in the general model and the empirical work.

We assume that the firm begins in the steady-state with no JCTC. At the beginning of the planning period, policymakers adopt a permanent JCTC with a “qualifying date” (the date at which time employment above the credit base qualifies for the credit) in the future. This delayed

9 A value of $\phi_{SS} = 1$ is a solution to equation (16). Since $h(0) \leq 0$, $\lim_{\phi_{SS} \to \infty} h[\phi_{SS}] \to +\infty$, and $h'[\phi_{SS}] > 0 \quad \forall \phi_{SS} > 0$, we can verify that $\phi_{SS} = 1$ is the unique solution to $h[\phi]$ provided $\gamma > 1$, $\alpha = 1 + \beta$, and $\beta \geq 0$.

JCTC regime leads to some very interesting dynamic behavior that we study in terms of its effect on employment in the BEFORE and then in the AT and AFTER intervals. There are two restrictive assumptions adopted in this sub-section. The rolling base is eliminated so that $B_{\text{BASE}} = 0$ or a constant in equation (4b). We maintain that there is an inventory stock that allows production to be smoothed across periods, but inventory costs are absent ($\mu = 0$). The first-order conditions for labor and sales for this restricted model are as follows,

$$ L_t = \left(\frac{\phi}{\delta * w_{\text{EFF}}} \right)^{(\gamma/(\gamma-1))} w_{t, \text{EFF}}^{\text{EFF}} = w^{w_{t, \text{EFF}}}, \quad t \in \{ \text{BEFORE} \}, \quad (17a) $$

$$ L_t = \left(\frac{\phi}{\delta * w_{\text{EFF}}} \right)^{(\gamma/(\gamma-1))} w_{t, \text{EFF}}^{\text{EFF}} = w^{w_{t, \text{EFF}}(1-\tau)}, \quad t \in \{ \text{AT, AFTER} \}, \quad (17b) $$

$$ S_t = \frac{\alpha - \phi}{\beta}, \quad t \in \{ \text{BEFORE, AT, AFTER} \}. \quad (17c) $$

The introduction of the JCTC lowers $w_{t, \text{EFF}}$ in the AT and AFTER intervals. Thus, L_t rises at the time of the qualifying date and stays permanently higher. These initial hiring and production plans lead to an imbalance with S_t, which, for the moment, remains fixed. A change in the shadow price of output restores the balance over the planning period. Per equations (17), the decline in ϕ (below its initial steady state value of 1) has three effects. First, it raises S_t uniformly in all three intervals. Second, it lowers L_t and Q_t in the BEFORE interval relative to the initial steady-state. Third, it also lowers L_t and Q_t in the AT and AFTER intervals. However, this decrease is more than offset by the increase from the lower effective wage rate.\(^{10}\)

\(^{10}\) This net effect depends on the properties of the term $\frac{\phi_{SS}}{(\delta * w_{SS}^{\text{EFF}})}$ appearing in equation (14); specifically, the elasticity of ϕ with respect to w_{SS}^{EFF} ($\varphi_{\phi, w_{SS}^{\text{EFF}}}$) must be less than one. To evaluate this condition, rewrite the steady-state relation $h[\phi_{SS}]$ in terms of w_{SS}^{EFF} (which does not generally appear in $h[\phi_{SS}]$ because of the normalization):
The adjustment process continues until the increased level of sales matches the increased level of output over the planning period.

These dynamics are illustrated in Figure xx that plots output and sales over time. (Recall that employment is monotonically increasing in output, \(L_t = Q_t^{\delta}, \delta > 1 \).) Output and sales do not move in tandem. As a result of the negatively-sloped demand curve, the firm smooths sales over time, and \(S_t \) is constant over the planning period (indicated by the flat dashed line in the figure). However, with the delayed JCTC and the zig-zag pattern of \(L_t \), inventory is drawn down in the BEFORE interval and subsequently rebuilt in the AT and AFTER intervals.

Inventory accumulation is costless in this restricted model, and no incentive exists to eliminate the imbalances quickly. Consequently, production in the AT and AFTER intervals is constant because of the curvature of the production function.

This analysis of a delayed JCTC generates Anticipatory Dips due to fiscal foresight: even though the effective wage rate in the BEFORE interval does not change, employment in that interval falls relative to its prior steady-state value. This change represents a shift in production from high-cost to low-cost periods as the firm, foreseeing the future drop in the effective wage rate, adopts an intertemporal production plan that minimizes average production costs and satisfies an endogenous sales constraint.

Decreasing returns to labor, a downward-sloping demand curve, and an inventory technology are each necessary for Anticipatory Dips. If the returns to labor were increasing,

\[
h[\phi_{SS}] = k[\phi_{SS}[w_{SS}^{Eff}], w_{SS}^{Eff}] = \chi[w_{SS}^{Eff}] = \beta(\phi_{SS}[w_{SS}^{Eff}] / (\delta * w_{SS}^{Eff}))^{1/(1-\delta)} + \phi_{SS}[w_{SS}^{Eff}] - \alpha. \]

In any steady-state, \(Q_{SS} = S_{SS} \) and hence \(\chi[w_{SS}^{Eff}] = 0 \) through an adjustment in \(\phi \) to the change in \(w_{SS}^{Eff} \). Differentiating \(\chi[w_{SS}^{Eff}] \) with respect to \(w_{SS}^{Eff} \), setting the derivative equal to zero, and evaluating this derivative at the original steady-state, we obtain \(\varepsilon_{\phi,w_{SS}^{Eff}} = (\beta / (\beta + \delta - 1)) < 1 \) provided \(\delta > 1 \) and \(\beta > 0 \).
then the firm would have an incentive to bunch production in the AT interval absent inventory costs in this restricted model. The absence of either of the remaining two conditions would lead to a sequence of static optimization problems. If the firm faced a perfectly elastic demand curve, then all of period t’s production could be sold without the penalty from declining marginal revenues. In this case, the dynamic elements in the optimization problem disappear, the firm sets period t production based only on the period t wage rate, and output and employment do not change in the BEFORE interval. Lastly, if there is no inventory technology, then $Q_t = S_t$ in each period, and the firm no longer has a separate sales decision. In this case, the inability to change inventory prevents the firm from taking advantage of the differential production costs due to the delayed implementation of the JCTC program. Again, the dynamic optimization problem becomes a sequence of static problems, and there are no interrelations among wage rates in different periods. With a concave production technology and a negatively-sloped demand curve, the firm has the motivation to smooth sales and reallocate production but, absent an inventory technology, it does not have the means to shift production across periods. All three elements are needed to provide the firm the motivation and means to shift employment and generate Anticipatory Dips.

E. Responses To A JCTC: No Inventory Costs

We now relax one of the two restrictions and analyze the effects of the rolling base on the response to the delayed JCTC. The qualitative effects on employment are identical to those documented in Section III.D, though the quantitative effects differ. With a rolling base, the

11 If the returns to labor were constant, the firm would be indifferent to producing in any period other than the first.

12 If an inventory technology is not available to the firm, the inventory accumulation constraint $(I_t = Q_t - S_t + I_{t-1})$ would be removed from the optimization problem (equation (8a)) and S_t would be replaced by Q_t for all t.
effective wage (equation (10b)) is impacted differently in the BEFORE interval and then in the
AT and AFTER intervals,

$$\frac{\partial w_{i}^{\text{EFF}}}{\partial \tau_{i}} = w^{*}R > 0 \quad t \in \{\text{BEFORE}\},$$ \hspace{1cm} (18a)

$$\frac{\partial w_{i}^{\text{EFF}}}{\partial \tau_{i}} = -w^{*}(1-R) = -w^{*}\left(\rho / (1+\rho)\right) < 0 \quad t \in \{\text{AT, AFTER}\}. \hspace{1cm} (18b)$$

Somewhat paradoxically, the introduction of the JCTC raises the effective wage rate in the
BEFORE interval. With a delayed JCTC, the firm is not eligible to receive the tax credit in the
BEFORE interval, and hence obtains no benefits. However, any hiring in the BEFORE interval
raises the employment base above which subsequent employment must rise in order to qualify
for the credit. Hence, employment in the BEFORE interval lowers the value of the credit in
future periods. Being forward-looking, the firm internalizes this cost when choosing
employment in the BEFORE interval. This negative effect on profitability is reflected in the
higher effective wage rate in equation (18a). In the AT and AFTER intervals, the JCTC lowers
effective wages. However, the quantitative impact is dramatically reduced by the rolling base
feature of the tax credit. The $\rho / (1+\rho)$ term in equation (18b) reflects that, with a rolling base,
eligible incremental employment receives a tax credit today but at the expense of eliminating the
tax credit on incremental employment tomorrow. This latter cost is discounted and, hence the
overall stimulus from the tax credit increases with the discount rate. Since the discount rate is
generally a small number, the rolling base feature substantially attenuates the impact of a JCTC
and affects the specification of the JCTC in the econometric equation. In the extreme with no
discounting ($\rho = 0$), the credit provides no stimulus at all.
The path of optimal sales and output (and implicitly labor) over time in this case are illustrated in Figure xx+1. For comparison purposes, these paths overlay the corresponding paths in the no-rolling-base case from Figure xx. Relative to that restricted model, the introduction of the rolling base raises the effective wage rates and lowers labor in both the BEFORE and AT/AFTER intervals. The quantitative extent of these decreases depends on the derivatives in equation (17) and the impact of these changes in w_t^{EFF} on ϕ (cf. fn. 7). This shadow price of output adjusts to correct imbalances between output and sales over the planning horizon. Evaluated at the steady-state value of $\phi = 1$, the initial imbalance is less in this model than in the no-rolling-base case because the relative fall in employment (hence output) over the entire planning period is lower. Consequently, the fall in ϕ and the rise in S_t will be less than in the restricted model, though these movements will be in the same direction.

F. Responses To A JCTC: The General Model

This sub-section analyzes the general model in which the JCTC has the rolling-base and inventory is costly. We introduce the latter effect by allowing $\mu > 0$. The first-order conditions for the general model are modified by including terms containing the cost of inventory imbalances (μ interacted with the inventory/sales target, ζ) and the shadow price of adding to inventory imbalances (θ_t),

$$
L_t = \left(\frac{\phi - \theta_t}{\delta * w_t^{\text{EFF}}} \right)^{(\delta/(\delta - 1))} \quad w_t^{\text{EFF}} \equiv w^*(1 + \tau_{t+1} * R) \quad t \in \{ \text{BEFORE} \},
$$

$$
L_t = \left(\frac{\phi - \theta_t}{\delta * w_t^{\text{EFF}}} \right)^{(\delta/(\delta - 1))} \quad w_t^{\text{EFF}} \equiv w^*(1 - \tau_t + \tau_{t+1} * R) \quad t \in \{ \text{AT, AFTER} \},
$$

$$
S_t = \frac{\alpha + \mu * \zeta * I_{t-1} + \theta_t - \phi_{SS}}{\beta + \mu * \zeta^2} \quad t \in \{ \text{BEFORE, AT, AFTER} \}.
$$
The introduction of costly inventory changes the quantitative but not the qualitative effects of the JCTC analyzed above. With S, and ϕ held at their initial steady-state levels, employment initially decreases in the BEFORE interval and increases in the AT and AFTER intervals. The BEFORE response in employment results in an inventory drawdown, $\theta_i < 0$ (per equation (9b)), and incremental employment in all periods becomes more valuable by reducing the inventory imbalance. Consequently, an unambiguous implication of the general model is that, when there are inventory costs, employment falls less in the BEFORE interval.

The relative change in employment in the AT and AFTER intervals is subject to two contrasting effects and the net effect is ambiguous. Since the inventory drawdown in the BEFORE period is lower, less subsequent employment is needed to replenish inventory. However, in the AT and the early stage of the AFTER intervals, there is an added incentive to hire labor and produce output to eliminate the costly inventory imbalance, and relative employment rises.

Inventory, its shadow price, and sales respond differently in subsequent periods relative to the model in sub-section E. In the face of a negative inventory imbalance, an incremental sale aggravates the imbalance and becomes less valuable in a model with costly inventory. The inventory imbalance is largest in the BEFORE interval and falls over time. The decrease in the imbalance results in an increase in θ_i that stimulates sales. Rather than being constant over the planning period, sales in the general model rises over time. As in all models considered here, ϕ adjusts so that the inventory imbalance is eliminated by the end of the planning period at which time $\theta_T = 0$.
Chart 100xx summarizes the theoretical predictions for the path of employment over the planning period and the interesting dynamics associated with a delayed JCTC. With a delayed JCTC, employment falls after the credit is enacted (at date t^5) as forward-looking firms delay hiring and draw down inventories to meet current demand. This decline is amplified when the value of the tax credit is computed with a rolling base. The combined effect is illustrated by line segment AB. When the JCTC goes into effect (at date t^0), employment rises sharply for several reasons: rebuilding the work force (line segment BC), responding to the lower effective wage rate (line segment CD), and replenishing inventory (line segment DE). Note that only the response indicated by line segment CD represents the “true” short-run stimulative effect of a JCTC. Gradually, employment falls as inventories return toward their steady-state levels, but it remains above the original employment level because of lower labor costs (line segment AF, which is the same length as line segment CF). The AFTER interval is divided into EARLY and LATER stages in order to recognize that firms may not be able to react to JCTC incentives in a single month owing to adjustment and decision-making frictions. Thus, we might expect that the sign for the AFTER-EARLY interval is a mix of positive employment at the qualifying date and negative employment as inventories are replenished and the work force reduced.

G. Immediate JCTC vs. Delayed JCTC Regimes

The above analysis has focused on a delayed JCTC regime, which has been adopted by nine states between 1990 and 2009. For a JCTC that goes into effect immediately, as is the case in 13 states, the pattern of employment in the AT, AFTER-EARLY, and AFTER-LATE intervals is qualitatively similar to those displayed in Chart 100xx. An important difference is that the Anticipatory Dips in output and employment that occur in delayed JCTC states (line segment AB) are absent for immediate JCTC states. In the latter case, in which firms qualify for the JCTC at
the employment increase in the AT interval will be smaller than it is for firms in the delayed JCTC states because there is no need to compensate for deferred hiring and inventory drawdowns. Thus, analyzing employment responses in immediate JCTC states provides a clean read on the true effectiveness of JCTCs (line segment CD), whereas employment responses in delayed JCTC states with implementation lags and rolling bases may overstate the effectiveness of tax credits (by the sum of the line segments BC and DE). These predictions are summarized in Table 2.

4. Data

JCTCs are credits against a state's corporate income or franchise tax. This section describes the unique state-level JCTC data that we have collected and contains details about the identification, valuation, and design of JCTCs. The latter part of this section briefly discusses the employment data and lists the control variables used in the econometric analyses.

A. Job Creation Tax Credits (JCTCs)

1. Identifying And Dating

We focus on broad-based JCTCs and identify states with these tax credits in three steps. First, we use Rogers (1998) to identify state JCTCs in place as of 1997. None of these JCTCs were enacted before 1993 (as indicated in Chart 1). Second, Site Selection’s website (www.siteselection.com) contains tables documenting various state tax incentives from 1997 onward. Third, we supplement these sources with, for each state, a general web search for “tax credits” and a more targeted search in the legal database WestLaw. We believe that we have identified all broad-based JCTCs for which both the signing and effective dates are within the period January 1990 and August 2009. In our empirical analyses, we exclude credits that were
enacted or went into effect after the start of the Great Recession in December 2007. With this cutoff rule, we avoid potential confounding effects on employment from the financial crisis, the ensuing downturn, and the large policy responses such as the federal 2009 Recovery Act whose tax cuts and spending levels varied by state.

Having identified all 23 states that have or have had a JCTC, we then use WestLaw to obtain the state statute code for the legislation associated with the JCTC. The state statute code identifies the session law that includes the bill signed into law, officially authorizing the credit. States session laws and bills are found either in WestLaw or on the state’s house/assembly website. These bills contain all of the relevant information on each JCTC needed for this paper. (These bills are available from the authors upon request.)

2. Valuing

The key regressor in our baseline regressions is a state’s effective tax credit rate. As shown in the model above (equations 19), the degree to which a permanent JCTC alters the effective wage is importantly affected by the rolling base feature of the credit. Our model implies that the effective wage rate \(w_{i,t}^{\text{EFF}} \) is as follows,

\[
\begin{align*}
 w_{i,t}^{\text{EFF}} &= w_{i,t} \times \left(1 + \tau_{i,t} / (1 + \rho)\right) & & t \in \{\text{BEFORE}\}, \\
 w_{i,t}^{\text{EFF}} &= w_{i,t} \times \left(1 - \tau_{i,t} \times (\rho / (1 + \rho))\right) & & t \in \{\text{AT, AFTER}\}.
\end{align*}
\]

\(^{13}\) The December 2007 cutoff rules out recently enacted credits in Colorado, Idaho, Indiana, Massachusetts, and Tennessee.

\(^{14}\) Wilson (2012) documents the large cross-state differences in the federal stimulus provided by the 2009 American Recovery and Reinvestment Act and finds that the stimulus spending had a substantial impact on state employment. See, also, Neumark and Grivalja (2013) for a study of the impact of JCTCs during the Great Recession.
The legislated tax credit rate \((\tau_{i,t})\) comes explicitly or implicitly from the legislation that enacted the credit, and it will be discussed below (equation (21)).

In equations (20a) and (20b), the signs preceding \(\tau_{i,t}\) and the scalars \((1/(1+\rho))\) and \((\rho/(1+\rho))\) reflect the rolling base aspect of the state JCTCs. Because a new hire today adds to the employment base that defines credit-eligibility for future employment, the credit is effectively a one-time, temporary credit. The key implications are that the rolling-base aspect of the tax credits in our sample makes their effective values much smaller than their legislated values. In particular, assuming an expected long-run nominal return on equity of 10% and an expected long-run inflation rate of 3%, \(\rho\) is 7%, and \((\rho/(1+\rho)) \approx 0.065\). Hence, after the qualifying date, the effective tax credit rate is only 6.5% of the legislated credit rate.

The legislated tax credit rates for the state JCTCs in our sample are computed in one of three ways, depending on the details of the enabling legislation,

\[
\tau_{i,t} = \left\{ \tau_{i,t}^{\text{WAGES}}, \tau_{i,t}^{\text{WITHHOLD}}, \tau_{i,t}^{\text{DOLLAR}} \right\}.
\]

In most JCTC states, the legislation explicitly provides a tax credit rate as a fraction of the new hire's annual wages \((\tau_{i,t}^{\text{WAGES}})\). This rate is taken directly from the legislation. In other JCTC states, the legislation specifies a rate based on the new hire's income tax withholdings \((\tau_{i,t}^{\text{WITHHOLD}})\). We estimate this tax credit rate as the product of the rate in the legislation and average income tax withholding in a state-year, the latter calculated as the product of average annual manufacturing wage and the statutory personal income tax rate (for the income bracket corresponding to that annual wage) in that state-year. The wage data are obtained from the Annual Survey of Manufacturers Geographic Area Statistics. In a third set of JCTC states, as
well as the federal JCTC in President Obama’s proposed (but not adopted) American Jobs Act of 2011, the legislation specifies an annual dollar tax credit per new employee. We compute the associated tax credit rate (τ^{\text{DOLLAR}}_{i,t}) as the dollar tax credit in the legislation divided by average annual wages in a state-year. For five of the 23 credits in our sample, the tax credit value is determined by a state agency or committee on an employer-by-employer basis. Unfortunately, these states do not routinely report both the tax expenditures and the incremental jobs or wages claimed by companies that used the credits, which would be needed to compute an average credit value. While we must thus exclude these states from our estimation of the user cost of labor elasticity, a robustness test in Section 6B, based on using only a credit indicator variable, documents that the omission of these five states does not appear to importantly affect our empirical estimates.

For some of the state JCTCs, firms can take the credit for multiple years as long as the new hire (or more accurately, the incremental addition to the firm's level of employment) is retained. In those cases, we compute the present discounted value of this stream of yearly credit amounts based on the number of years for which the firm gets the credit.

We also adjust the effective legislated tax credit rate for the number of eligible firms. JCTCs are granted only for firms that are not contracting, and we multiply τ_{i,t} in equation (20c) by the proportion of firms eligible to use the credit (\text{ELIGIBLE}_{i,t}). The later variable equals one minus the fraction of establishments ineligible for a JCTC as determined by plant closings or employment reductions. Data by state and year on this fraction are obtained from the Bureau of Labor Statistics.
3. The General Design15

As mentioned above, 23 states have or have had a broad JCTC with little or no restrictions on eligible industries and little or no restrictions on eligible geographic areas within the state.16 Focusing on a broad-based tax credit allows us to avoid the distorting effects of a “stigma” that accompanies targeted tax credits, as employers may use the availability of a targeted credit as a signal of unobservable labor productivity (Bartik, 2001, Chapter 8 and Katz (1998)). In addition, our primarily empirical objective is to assess the ability of job creation tax credits to impact aggregate employment; narrowly targeted credits are much less likely to have an economically meaningful impact on aggregate employment. The details of these tax credits vary widely, but their basic designs are quite similar.

These tax credits are intended to subsidize net job creation by businesses. That is, only new jobs that expand a business' total payroll employment level qualify for the tax credit. With many state JCTCs, a firm can only claim the credit if the number of jobs and/or wages associated with new jobs are above specified thresholds and meet certain other requirements, such as providing health insurance. In order to target net job creation instead of gross job creation, the thresholds are defined on a “rolling basis” – the initial threshold is based on previous levels of employment or wages and future thresholds are increased to reflect recent hires – in all but one state (Rhode Island with its 1995-97 temporary JCTC with a fixed base). Some states offer multiple tax credit rates that increase with the number of, or wages associated with, the added jobs.

15 This description is based largely on the information provided in Wilson and Notzon (2009).

16 Georgia is an exception because only jobs in manufacturing are eligible for the credit. Results presented in Section 6 do not suggest any anomalous behavior. California and New Jersey have extremely narrowly targeted JCTC, and they were excluded from our dataset.
State JCTCs differ with regard to how many years a business can apply the credit for a given hire against taxable income. Multi-year credits are intended to encourage future job retention in addition to current job creation. Similarly, most states require partial payback of the credit if the business’ employment if the net new job(s) associated with the credit are not maintained for a specified length of time (i.e., if the business’ employment level falls below the threshold on which the credit was based).

JCTCs are valuable even if a firm has no current tax liability. Very few JCTCs are refundable (receipt of a payment from the state even if there is no current tax liability). However, many JCTCs have carry-back/carry-forward provisions (the use of a current year credit to reduce past or future tax liabilities). Our initial empirical evidence in Section 2 suggests that refundability has a positive impact on employment growth.

B. Employment And Other Data

The empirical work reported here is based on monthly, seasonally adjusted, private non-farm employment data for the period January 1990 to September 2009. The earlier date is the first month in which these data are published. The latter date is chosen because it is the latest month (when the data were being compiled) that reflects information from state administrative records (based on unemployment insurance) and is no longer subject to revisions by the Bureau of Labor Statistics. This time span provides at least twelve months prior to and after each of the 22 credits in our sample.

A description of the construction and sources for the two control variables (\(\Delta L_{i,t}^{P} / L_{i,t-1}^{P} \) and COMPETITION\(_{i,t}\)) in the employment growth equation will be presented in Section 5.C and the political (REPUBLICAN\(_{i,t}\)), tax competition (COMPETITION\(_{i,t}\)), and user cost
(UCC_{i,t}) variables in the JCTC adoption decision equation in Section 5.A. Brief descriptions can be also found in the Glossary.

5. Empirical Preliminaries And Specification Issues

Before analyzing the impact of JCTCs on employment growth in Section 6, we first study the JCTC adoption decision and determine the statistical properties of the employment data. These results inform our specification of the estimating equation in sub-section C.

A. Understanding JCTC Adoption

Apart from developing a better general understanding of JCTCs, analyzing the adoption decision is useful for assessing the importance of an endogeneity bias potentially affecting our estimates of the JCTCs’ employment growth effects. It is possible that shocks affecting a state’s recent employment growth will influence the adoption of a JCTC. In particular, weak employment growth might make it more likely that JCTC legislation will be enacted and, with serial correlation in employment growth, estimates of the effectiveness of the JCTC may be biased downward. To assess the potential importance of this channel of influence, we estimate the following logit equation (Φ{...}) containing lagged employment growth and controls,

\[\text{PROB}\{D_{i,t}^{\text{Signing}} = 1\} = \Phi\{\text{LGROWTH}_{i,t}, \text{REPUBLICAN}_{i,t}, \text{COMPETITION}_{i,t}, \text{UCC}_{i,t}, u_{i,t}\}, \]

where \(D_{i,t}^{\text{Signing}} \) is an indicator variable for the signing date in state i at time t, PROB[.] is the probability that \(D_{i,t}^{\text{Signing}} = 1 \), LGROWTH_{i,t} is employment growth defined below in several different ways, REPUBLICAN_{i,t} is an indicator variable measuring the strength of Republican influence in state government, COMPETITION_{i,t} is the fraction of bordering states with JCTCs,
$\text{UCC}_{i,t}$ is the user cost of business capital, and $u_{i,t}$ is an error term containing a white-noise component and a state fixed effect. Since there are likely a number of factors determining JCTC adoption not included in equation (22), we believe that it is important to control for a time-invariant element of state-specific factors. With state fixed effects, consistent estimation is possible with a logit model but not a probit model (Cameron and Trivedi, 2005, Section 23.4).

Logit estimates of equation (22) are presented in Table 3. Since assessing the role of employment growth is the primary purpose of this exercise, we measure employment growth ($\text{LGROWTH}_{i,t}$) four different ways: employment growth in state i over the prior 12 months ($\text{LGROWTH}_{i,t}^{12}$), this growth rate relative to the average employment growth rate in the states bordering state i ($\text{LGROWTH}_{i,t}^{12,\text{Bordering}}$), and the same two variables computed over the prior 24 months. In each case, the coefficient reported in Table 3 is small and statistically insignificant (at conventional levels). There is no evidence indicating that employment growth influences JCTC adoptions.

A similar result is obtained regarding political parties. As expected, Republican control of the state government makes JCTC adoption less likely, though the results are both statistically and economically insignificant.

By contrast, JCTC adoptions are influenced positively by competition from tax policies of bordering states ($\text{COMPETITION}_{i,t}$) and negatively by changes in own-state business capital tax policy ($\text{UCC}_{i,t}$). The latter result suggests that business tax policies are considered as a package that encompasses both a reduction of business capital taxes and the adoption of JCTCs (Wildasin, 2007). Both coefficients are statistically significant regardless of the definition of
employment growth. The relatively large coefficients on \(UCC_{i,t} \) reflect the units in which the user cost is measured.

In sum, the results in Table 3 suggest that JCTC are adopted as longer-term tax policy measures in response to a general desire to cut business taxes and that they do not appear to be a short-term, countercyclical policy responding to anemic employment. This interpretation is also consistent with the nature of state JCTCs, which are either permanent or were not set to expire for many years.

B. Properties of the Monthly Employment Data

The statistical properties of the employment data are important for a proper specification of an econometric equation relating employment to JCTCs. With a particular interest in examining the persistence properties of the series, we estimate the following two models,

\[
\ln \{L_{i,t}\} = \tilde{A}_i + \tilde{B}_t + \sum_{j=-12}^{12} \tilde{C}_j D_{i,t-j}^{\text{Effective}} + \sum_{j=1}^{24} \tilde{\psi}_j \ln \{L_{i,t-j}\} + \tilde{u}_{i,t} \tag{23}
\]

\[
\Delta L_{i,t} / L_{i,t-1} = A_i + B_t + \sum_{j=-12}^{12} C_j D_{i,t-j}^{\text{Effective}} + \sum_{j=1}^{24} \psi_j \{\Delta L_{i,t-j} / L_{i,t-j-1}\} + u_{i,t} , \tag{24}
\]

\[
\tilde{\Psi}_J = \sum_{j=1}^{J} \tilde{\psi}_j , \quad \Psi_J = \sum_{j=1}^{J} \psi_j , \tag{25a}
\]

\[
\tilde{u}_{i,t} = \tilde{r}_i \tilde{u}_{i,t-1} + \tilde{\epsilon}_{i,t} , \quad u_{i,t} = r_i u_{i,t-1} + \epsilon_{i,t} , \tag{25b}
\]
where $L_{i,t}$ is the level of employment for state i in time period t, $\ln\{\}$ is the logarithmic operator, $\Delta L_{i,t} / L_{i,t-1}$, is the growth rate in employment, A_i, B_t, C_j, ψ_j, and r_i (and the kindred parameters with a “~”) are parameters to be estimated. $D^\text{Effective}_{i,t-j}$ is an indicator variable taking a value of 1 in the month when the JCTC becomes effective, which is the latter of the signing and qualifying months. The coefficients on this indicator variable identify the increase or decrease in employment growth during the first month in which businesses BOTH know that a credit has been enacted (i.e., signed into law) and can start making qualifying hires (i.e., after the qualifying date). Twelve leads and lags of $D^\text{Effective}_{i,t-j}$ are included in equations (23) and (24), in addition to its contemporaneous value. Lagged dependent variables are entered for up to $J = 24$ months and are parameterized by the individual ψ_j's and their sum over J periods, Ψ_J. Inclusion of the lagged dependent variable accounts for possible persistence in employment.

The results of estimating the log levels equation (23) for various values of J are presented in Table 4, Panel A.\(^{17}\) When $J = 1$, the value of $\Theta_1 = 0$ (column 2) is close to 1.0. For additional lags of the dependent variable (larger values of J), Θ_J is greater than one, and the log levels equation would not appear to be a suitable specification for employment.

Panel B contains estimates of the growth rate equation (24). Even for $J = 1$, serial correlation is absent (cf. columns 6 and 7) and the sums of coefficients on the lagged dependent variables in column 2 are close to zero for small values of J. For larger values of J, the coefficient on the additional lagged dependent variable becomes statistically significant, but the near constancy of the R^2's suggests that there is little additional explanatory power provided by

\(^{17}\) Results for only 12 lags ($J \leq 12$) are reported in Table 4. The results are robust for $13 \leq J \leq 24$.\)
more lags. The results in Table 4 strongly suggest that employment is best modeled as a simple growth rate.

This initial conclusion is confirmed by a formal unit root test. To assess stationarity, we use the panel unit root test recently proposed by Pesaran (2007) that extends the standard augmented Dickey-Fuller test to allow for cross-sectional dependence. For the log level of employment, we estimate the following auxiliary equation,

\[
\frac{\Delta L_{i,t}}{L_{i,t-1}} = a_i + b_i \ln \left\{ L_{i,t-1} \right\} + \bar{b}_i \bar{L}_{t-1} + \sum_{j=1}^{J'} d_{i,j} \Delta L_{i,t-j} + \sum_{j=0}^{J'} d_{i,j} \Delta L_{t-j} \\
+ g_i t + u_{i,t},
\]

(26a)

\[
u_{i,t} = r_i u_{i,t-1} + \varepsilon_{i,t},
\]

(26b)

\[\mu_b = \frac{48}{\sum_{i=1}^{48} b_i} / 48,\]

(26c)

where the critical values for \(\mu_b\) are provided in Pesaran’s Tables II.b and II.c for tests without and with a time trend \((g_i t\) in the above equation), respectively. The lag length for the lagged dependent variable \((J')\) is determined by the need to absorb any serial correlation in the errors. The estimated values of \(\mu_b\) are well below these critical values and serial correlation is absent. This test indicates that the monthly series for \(\ln \left\{ L_{i,t} \right\}\) has a unit root and confirms that employment is best modeled as a growth rate.

Taken together, the results presented in Section 5.A and 5.B indicate that an estimating equation with employment growth as the dependent variable and a measure of JCTCs as an independent variable will deliver consistent parameter estimates.
C. Specification Of The Estimating Equation

With these conclusions in mind, we relate employment growth to JCTCs and other determinants in the following equation,

$$\frac{\Delta L_{i,t}}{L_{i,t-1}} = \gamma \cdot F\left[\text{JCTC}_{i,t}\right] + \kappa \cdot \left(\frac{\Delta X_{i,t}}{X_{i,t-1}}\right) + u_{i,t},$$ \hspace{1cm} (27)

where $F\left[\text{JCTC}_{i,t}\right]$ is a general function capturing the effects of the JCTC on growth in the effective wage rate, $X_{i,t}$ represents control variables, $u_{i,t}$ is an error term that contains several components (discussed below) and κ and γ are parameters to be estimated. Equation (27) is not a first-order condition from a structural model and γ should not be interpreted as a structural parameter. Rather, γ is an average treatment effect measuring the impact of the tax credit. The object of our analysis is to generate consistent estimates of γ for several intervals and across two regimes. The JCTC has a negative effect on the effective wage rate that, in turn, has a negative impact on employment growth, $F\left[\text{JCTC}_{i,t}\right]$ is expected to have a positive impact on employment growth for an increase in the tax credit.

We consider each of the right-side terms in turn. The $F\left[\text{JCTC}_{i,t}\right]$ variable is defined in three different ways reflecting finer measures of the impact of the tax credit. The coarsest measure is an indicator variable, $F^1\left[\text{JCTC}_{i,t}\right]$, taking the value of 1 in those periods when the JCTC is relevant to the firm; 0 otherwise. While this measure of the effects of the JCTC relies on a minimal number of auxiliary assumptions, it does not account for variation across states in the value of the tax credit. Our second measure recognizes this variation by multiplying the indicator variable by the legislated value of the tax credit. In this case, $F^2\left[\text{JCTC}_{i,t}\right] = \tau_{i,t}$; note that this variable will be 0 during those periods when the JCTC is not relevant. As indicated by
the theoretical model, there are subtle relations between the JCTC and its ultimate incentive effects. In particular, the negative incentives in the BEFORE interval for delayed JCTCs is not captured by $F^2[JCTC_{i,t}]$, though this issue does not affect the estimation of the other coefficients in this regression. Our third definition captures these incentive effects as represented by the first-order conditions (equations 19) describing the relation between the level of employment and the JCTC. For the employment growth equation, we compute the logarithmic time differences of these first-order conditions. (An explicit derivation is contained in Appendix xx.) We further assume that variations in JCTCs have no effect on the gross-of-JCTC wage rate and that the non-JCTC induced variation in the wage rate is captured by the time and state fixed effects. The resulting regressors for the Delayed Regime are as follows

$$
F^3,\text{BEFORE} \left[JCTC_{i,t} \right] = -\tau_{i,t} / (1+\rho), \\
F^3,\text{AT} \left[JCTC_{i,t} \right] = \tau_{i,t}, \\
F^3,\text{AFTER} \left[JCTC_{i,t} \right] = 0.
$$

The comparable entries for the Immediate Regime are as follows,

$$
F^3,\text{AT} \left[JCTC_{i,t} \right] = \tau_{i,t} * (\rho / (1+\rho)), \\
F^3,\text{AFTER} \left[JCTC_{i,t} \right] = 0.
$$

Equations (28) and (29) make clear the distinction between the treatment and the treatment effect. The treatments due to the JCTCs are positive in the AT period for both regimes. However, owing to the Anticipatory Dip, the treatment in the Before Interval for the Delayed Regime is negative.

18 For the purposes of exposition, we show here the first-order Taylor approximations of the logarithmic differences rather than the full (messier) expressions of the logarithmic differences. We compute the regressors using the full expressions, which are shown in Appendix xx.
The second right-side term in equation (27) represents two control variables included in the baseline model. One way to control for overall demand conditions in the state and avoid endogeneity problems is to include a measure of the state’s exposure to particularly fast-growing or slow-growing industries. For example, even in absence of any employment-inducing fiscal policies, a state with a large IT industry during the late 1990s was likely to experience rapid employment growth during that period. One way to control for industry-driven employment changes is to first predict a state’s year-over-year employment growth rate by calculating a weighted-average across industries of the national (excluding own-state) employment growth rates (year-over-year), where the weights are the state’s employment shares in each industry. Multiplying this predicted annual growth rate by the level of own-state employment in period t - 12 yields a predicted level of employment in period t. This “predicted” employment variable, \(P_{i,t}^L \), was introduced by Bartik (1991) and is frequently referred to as the “Bartik mix variable.” If the state is small relative to the nation, then this variable will not be correlated with the error term. Given that our empirical model is stated in terms of monthly growth rates (based on the tests in Section 5.B), we therefore add the monthly growth rate of this predicted employment variable, \(\Delta L_{i,t}^P / L_{i,t-1}^P \), to our baseline specification.

A second control variable is suggested by the logit results. Section 5.A documented that the adoption of a JCTC is positively influenced by JCTCs in effect in bordering states. Since one of the underlying channels of influence may be the effect of bordering state JCTCs on in-state employment, we control for this possible effect by including \(\text{COMPETITION}_{i,t} \) as an additional control variable. While these two control variables would seem relevant, we
recognize that some relevant variation in employment growth will remain and become part of the error term.

The third right-side variable in equation (27) is the error term modeled as follows,

$$u_{i,t} = \alpha_{i} + \beta_{t} + \epsilon_{i,t},$$ \hspace{1cm} (30)

α_{i} is a state-specific effect (for the employment growth rate), β_{t} is a time fixed effect, and $\epsilon_{i,t}$ is a white noise error term.

Substituting equations (29) and (30) into equation (27) and inserting the two control variables, we obtain the following estimating equation,

$$\Delta L_{i,t} / L_{i,t-1} = \gamma F[JCTC_{i,t}] + \kappa_{1} \left(\Delta L_{i,t}^{P} / L_{i,t-1}^{P} \right) + \kappa_{2} \text{COMPETITION}_{i,t} + \alpha_{i} + \beta_{t} + \epsilon_{i,t},$$ \hspace{1cm} (31)

where the 25 non-JCTC states serve as the control group.

Equation (31) is appropriate for examining the contemporaneous effects of the adoption of JCTC homogeneous across states and quantifying its impact on employment growth by the estimated γ parameter. However, the multiple intervals (BEFORE, AT, AFTER-EARLY, and AFTER-LATE) and multiple regimes (Delayed or Immediate) complicate estimation. Consequently, the $\gamma F[JCTC_{i,t}]$ term in equation (31) needs to be expanded in several dimensions. For example, if we are interested in the both the month at which the JCTC is adopted (the “At” interval) and the interval before adoption (the “Before” interval) that extends for J_{Before} months, then the $\gamma F[JCTC_{i,t}]$ term is replaced by the following expanded expression,

$$\gamma F[JCTC_{i,t}] \rightarrow \sum_{j=1}^{J_{\text{Before}}} \gamma_{j}^{\text{Before}} F[JCTC_{i,t+j}] + \gamma^{\text{At}} F[JCTC_{i,t}] .$$ \hspace{1cm} (32)
In principle, we would like to estimate a \(\gamma_j^{Before} \) coefficient for each month in the before interval. However, there are far too few JCTC adoptions to estimate these monthly parameters with any precision. Thus, we replace the series of monthly \(\gamma_j^{Before} \)s with one \(\gamma^{Before} \) for the before interval,

\[
\gamma * F[JCTC_{i,t}] \rightarrow \gamma^{Before} \sum_{j=1}^{Before} F[JCTC_{i,t+j}] + \gamma^{At} \gamma \sum_{j=1}^{JCTC} F[JCTC_{i,t}]. \tag{33}
\]

As discussed in the theory section, we are also interested in the impact of JCTCs after adoption, and expression (33) is expanded to include two more intervals, “After-Early” and “After-Late” that extend for \(J^{After-Early} \) and \(J^{After-Late} \) months, respectively,

\[
\gamma * F[JCTC_{i,t}] \rightarrow \gamma^{Before} \sum_{j=1}^{Before} F[JCTC_{i,t+j}] + \gamma^{At} \gamma \sum_{j=1}^{JCTC} F[JCTC_{i,t}]
\]

\[
+ \gamma^{After-Early} \sum_{j=1}^{J^{After-Early}} F[JCTC_{i,t-j}] + \gamma^{After-Late} \sum_{j=J^{After-Early}+1}^{J^{After-Late}} F[JCTC_{i,t-j}]. \tag{34}
\]

The purpose of dividing the After interval into these two subintervals is to allow for the possibility that the initial response to the tax credit, which theoretically would occur only in the month defining the At interval, might spillover into the subsequent two or three months due to adjustment costs. The length of the After-Early interval is three months; the length of the and After-Late varies from nine to 45 months.

The notation in equation (34) needs to be modified in two ways to reflect additional nuances in our data. First, the length of the Before interval is determined by the nature of each state’s JCTC legislative history and, per the discussion in Section 4.A, the resulting “distance”
between the signing and qualifying dates. Thus, we need to add an \(i \) subscript to \(J_{\text{Before}} \).

Second, equation (34) does not recognize that the responses of employment growth may differ across the two JCTC regimes – Delayed (Del) and Immediate (Imm). This differential sensitivity is apparent for \(\gamma_{\text{Before}} \), which is zero by construction for immediate JCTC states but estimated freely for delayed JCTC states. Moreover, the theoretical model implies that \(\gamma_{\text{At}} \) should be relatively larger in delayed JCTC states where firms may have postponed hiring in anticipation of a future tax credit. To recognize these differential responses, we add \(\text{Del} \) and \(\text{Imm} \) subscripts to the \(\gamma \)s and sum over states in the two distinct regimes,

\[
\gamma_{\text{JCTC}_{i,t}} \rightarrow \sum_{i \in \text{Del}} \left\{ \gamma_{\text{Del}} \left[\sum_{j=1}^{J_{\text{Before}}} \gamma_{\text{Before}} F[\text{JCTC}_{i,t+j}] + \gamma_{\text{At}} F[\text{JCTC}_{i,t}] \right] \right\} \\
+ \sum_{i \in \text{Imm}} \left\{ \gamma_{\text{Imm}} F[\text{JCTC}_{i,t}] \right\} \\
+ \sum_{j=1}^{J_{\text{After}}} \left\{ \gamma_{\text{Del}} \left[\sum_{j=1}^{J_{\text{After}}} \gamma_{\text{Del}} F[\text{JCTC}_{i,t-j}] + \gamma_{\text{Del}} F[\text{JCTC}_{i,t-j}] \right] \right\}
\]

In sum, equations (31) and (35) define the econometric equation that will generate the estimates reported in this paper.
6. Empirical Results

Please see the Tables 4 to 10.

7. Prior Literature and Policy Implications

A. Prior Literature

A job tax credit has been tried only once before at the U.S. federal level, the 1977-1978 “New Jobs Tax Credit” (NJTC). Sunley (1980) offers a detailed description of the convoluted policy discussions and legislative history surrounding the eventual enactment of the NJTC. It is particularly important to note that crucial details of the NJTC were not determined until the end of the process in the House/Senate Conference Committee and thus would have been difficult to anticipate. The NJTC offered corporations with taxable income a credit whose value was proportional to the increase in the corporation’s net payroll employment level above 102% of its previous year’s employment level.

The effectiveness of the NJTC has been discussed in three studies. Using survey data in a cross-section regression, Perloff and Wachter (1979) find that firms that reported knowing about the credit experienced 3% higher employment growth than other firms. Bishop (1981) also studies the employment effects of the NJTC but with time series data for several industries likely to be responsive to the NJTC. He reports that the NJTC increased employment in the Construction, Trucking, Wholesale, and Retail sectors in 1977-1978 by between 0.66% and 2.95%. As in the Wachter study, the effects of the NJTC are measured by a variable reflecting the percentage of firms aware of the tax credit. By contrast, Sunley (1980, p. 408) concludes that the effects of the NJTC were “slight” because of the complexity of the law and delays between hiring decisions by firms and eligibility determination by regulators.
There are three other studies that have quantified the effects of marginal tax credits.19 Kesselman, Williamson, and Berndt (1977) estimate a translog cost function and report that, for equal revenue costs and hypothetical policies, the percentage increase in employment from a marginal employment tax credit is about twice as great as the comparable increase from a uniform employment tax credit. Faulk (2002) examines an incremental job tax credit in Georgia. With cross-section data, she estimates separate employment equations for eligible firms that are participating or non-participating in the Georgia program and a probit selection equation to determine participation. For those eligible firms participating in the program, employment rose by between 23 to 28 percent. The cost was between $2,280 and $2,680 per job created.

More recently, Bartik and Bishop (2009) undertake a detailed simulation exercise of a refundable JCTC valued at 15\% of the wage cost of new employment in 2010 and 10\% in 2011. They conclude that the cost per job would be $4,656 in 2010 and $6,301 in 2011. There analysis is particularly useful in explicitly stating the assumptions underlying the computations. There are three key assumptions in their analysis: (1) the wage elasticity of labor demand (the larger the elasticity, the lower the cost per job); (2) the increase in GDP induced by the tax credit (the larger the multiplier, the lower the cost per job);20 and (3) the number of jobs that generate tax credits even though they would have been created sans the JCTC (the smaller inframarginal job growth, the lower the cost per job).

Many more studies will be added to this section.

19 Fethke, Policano, and Williamson (1978) discuss several conceptual issues concerning employment tax credits.

20 Regarding fiscal multipliers, see Wilson (2010) and the articles in the September 2011 issue of the \textit{Journal of Economic Literature}.
B. Policy Implications

Our estimates are useful for analyzing the impact of President Obama’s recent proposal of a $4,000 federal JCTC for long-term unemployed workers. For the average worker, this corresponds to about a 10% reduction in one year’s wages. However, as indicated in equation (10), the effective JCTC is the product of this change, the adjustment for the rolling base aspect of the state JCTCs in our sample (0.065), and eligibility (0.94). Thus, the effective decline in wage costs is 0.6%. Multiplying this figure by our elasticity of 0.35, we obtain an increase in employment of 0.2%, which corresponds to about 280,000 workers or a reduction in the unemployment rate of 0.1 percentage points.

There are two factors that are determining this modest outcome. The policy initiative is relatively small because of the rolling base feature or, equivalently, because a partial reduction in one year’s wages is very small when compared to the total wage cost over the expected employment relationship. And the response to this modest stimulus of 0.35% (cf. Table 4) is also relatively small.

8. Conclusions

In Process.
Bibliography

Glossary

COMPETITION_{i,t}. Fraction of bordering states with JCTCs over the prior 12 months:

\[\text{COMPETITION}_{i,t} = \frac{48}{B(i)} \sum_{j=1}^{B(i)} \text{ACTIVE}_{j,t}^{\text{JCTC}} \text{Bordering}_{j,i} / \text{ACTIVE}_{j,t}^{\text{JCTC}} \]

\[\text{Bordering}_{j,i} = 1 \text{ if state } j \text{ borders state } i, \]

\[\text{Bordering}_{j,i} = 0 \text{ otherwise; } \text{ACTIVE}_{j,t}^{\text{JCTC}} = \max \left\{ 0, \text{D}_{j,t}^{\text{SIGNING}} \right\} \text{ for } m = 1, 12 \]

\[B(i) \] is the number of states that border state i.

D_{i,t}^{\text{Effective}}. An indicator variable taking the value of 1 in the month when the JCTC becomes effective (\(t = t_{i}^{\text{Effective}} \)), which we identify as the latter of the signing and qualifying months; 0 otherwise. This indicator variable will be 0 for all t for the 25 states without a JCTC.

D_{i,t}^{\text{LT}}. An indicator variable for the local trend taking the value of 1 for the 12 months before, at, and the 12 months after the qualifying month (\(t = t_{i}^{\text{Qualifying}} \)), 0 otherwise:

\[D_{i,t}^{\text{LT}} = D_{i,t}^{\text{Window, Pre-Effective}} + D_{i,t}^{\text{Effective}} + D_{i,t}^{\text{Window, Post-Effective}} \]

where these three indicator variables are defined elsewhere in this Glossary.

D_{i,t}^{\text{Qualifying}}. An indicator variable taking the value of 1 in the JCTC qualifying month (\(t = t_{i}^{\text{Qualifying}} \)); 0 otherwise. This indicator variable will be 0 for all t for all states without a JCTC.

D_{i,t}^{\text{Signing}}. An indicator variable taking the value of 1 in the JCTC signing month (\(t = t_{i}^{\text{Signing}} \)), 0 otherwise. This indicator variable will be 0 for all t for the 25 states without a JCTC.

D_{i,t}^{\text{Window, Post-Effective}}. An indicator variable taking the value of 1 in a 12 month window after the JCTC qualifying month, \(t_{i}^{\text{Qualifying}} < t \leq t_{i}^{\text{Qualifying}} + 12 \), 0 otherwise.

D_{i,t}^{\text{Window, Pre-Effective}}. An indicator variable taking the value of 1 in a 12 month window before the JCTC qualifying month, \(t_{i}^{\text{Qualifying}} - 12 \leq t < t_{i}^{\text{Qualifying}} \), 0 otherwise.

Fiscal foresight. The phenomenon whereby economic agents know with probability 1 that a JCTC will go into effect on a known date in the future. This situation only occurs during the period between the signing date and the qualifying date for credits with implementation periods. Also known as “Ashenfelter Dips.” See line segment AB in Chart 4.
i: An index for state i.

Implementation Interval. Interval between signing and qualifying months when
\(t_{\text{Signing}}^i < t_{\text{Qualifying}}^i \).

Implementation Regime (I). A JCTC with an implementation period.

Inventory overshooting effect. JCTC-induced response of employment that occurs on the
effective date and reflects the accumulation of inventory that compensates for prior draw downs
and/or reflects intertemporal substitution in the face of temporarily lower labor costs. Line
segment DE in Chart 4.

\(\text{INELIGIBLE}_{i,t} \). The fraction of establishments that are ineligible for a JCTC because of
plant closings or employment reductions. Source: xx.

\(L_{i,t} \). The level of employment. Source: xx

\(\text{LGROWTH}^i_{i,t} \). Employment growth over some number of prior months. This variable
is defined in four different ways. See Table 2 for details.

\(\text{LGROWTH}^{N}_{i,t} \). Employment growth over the prior N months:
\[
= \frac{(L_{i,t} - L_{i,t-N})}{L_{i,t-N}}, \quad N = 12, 24. \quad \text{For } N = 1, \quad \text{LGROWTH}^1_{i,t} = \Delta L_{i,t} / L_{i,t-1}
\]

\(\text{LGROWTH}^{N,\text{Bordering}}_{i,t} \). Employment growth in the states bordering state i over the prior
N months:
\[
= \frac{(L^\text{Bordering}_{i,t} - L^\text{Bordering}_{i,t-N})}{L^\text{Bordering}_{i,t-N}}, \quad N = 12, 24; \quad L^\text{Bordering}_{i,t} = \sum_{j=1}^{48} \omega^\text{Bordering}_{j,i} L_{j,t}
\]
\(\omega^\text{Bordering}_{j,i} = 1 \text{ if state } j \text{ borders state } i, \quad \omega^\text{Bordering}_{j,i} = 0 \text{ otherwise }.

Long-run effect ("True"). The JCTC-induced response of employment between the time
the tax credit becomes effective (\(t_{\text{Effective}}^i \) and one year later (\(t_{\text{Effective}}^i + 12 \)). Line segment CF
(equal to line segment AF) in Chart 4.

\(L^p_{i,t} \). "Predicted" employment: a weighted-average across industries of the national
(excluding own-state) employment growth rates (year-over-year), where the weights are the
state’s employment shares in each industry. Multiplying this predicted annual growth rate by the
level of own-state employment in period \(t - 12 \) yields a predicted level of employment in period t.
\(LT_{i,t}\). A local trend defined for the 12 months prior to the earlier of the signing and qualifying date to 12 months after the later of the two dates: \(= \hat{\lambda}_i D_i^{LT}\), where \(D_i^{LT}\) is an indicator variable and \(\hat{\lambda}_i\) is the local employment growth rate (defined elsewhere in this Glossary) and \(t\) indexes time. Since this component of the error term is pre-set, we subtract \(LT_{i,t}\) from the dependent variable prior to estimation of equations (29) and (33).

\(\hat{\lambda}_i\). Is the local employment growth rate defining the local trend (\(LT_{i,t}\)). Estimation of \(\lambda_i\) over the entire 25 month window would be problematic because part of the effect of the JCTC would be reflected in this estimate, thus attenuating the estimated \(\gamma_s\). To avoid this problem, we assume that the local trend (in employment) is constant over the 25 month window. We then estimate \(\hat{\lambda}_i\) from the residuals in the Pre-Effective period from an equation similar to equation (29) without the JCTC variables. This estimated \(\hat{\lambda}_i\) is used for the Pre-Effective, Effective, and Post-Effective periods.

Rebound effect. JCTC-induced response of employment that occurs on the effective date and compensates for the anticipation effects. Line segment BC in Chart 4. Note that Point C has the same value as Point A.

\(\text{REPUBLICAN}_{i,t}\). An indicator variable taking the value of 1 if both the governorship and the legislature are Republican controlled, a value of 1/2 if only one of these elected bodies is Republican controlled, and 0 if neither of these elected bodies are Republican controlled. Source: xx.

Short-run effect (“True”). JCTC-induced response of employment that occurs on the effective date, net of the rebound effect. Line segment CD in Chart 3.

Signing date/month (\(t_i^{\text{Signing}}\)). Date/month at which the governor in state \(i\) officially signs or enacts JCTC legislation into law.

t. An index for time measured in months.

\(t_i^{\text{Effective}}\). Effective month for the JCTC defined as the later of the signing and qualifying months: \(t_i^{\text{Effective}} = \text{MAX}\left\{t_i^{\text{Signing}}, t_i^{\text{Qualifying}}\right\}\).

\(t_i^{\text{Qualifying}}\). Qualifying month for the JCTC; the earliest month a new hire may qualify for a JCTC. Source: Authors’ compilation.

\(t_i^{\text{Signing}}\). Signing month for the JCTC. Source: Authors’ compilation.
\(\tau_{i,t} \) The rate of a Job Creation Tax Credit. Source: see discussion in Section 3.

\(\text{UCC}_{i,t} \). The user cost of capital that measures the nominal incentive effects due to business capital taxes.

\(\text{UCL}_{i,t} \). The user cost of labor that measures the incentive effects due to JCTCs:

\[W_{i,t} (1 - \tau_{i,t}) . \]

\(W_{i,t} \). The nominal wage rate.
Chart 1: Number Of States That Have Enacted A JCTC
January 1990 To August 2009
Chart 2: Map Showing States That Have Had a JCTC
As Of August 2009
Chart 5: Theoretical Predictions of the Path of Employment around a JCTC “event”
No Rolling Base; No Inventory Costs
Chart 6: Theoretical Predictions of the Path of Employment around a JCTC “event”
No Inventory Costs
Before

Employment

Inventory replenishment,
Temporary oversooting

Labor subsidy effect,
"True" JCTC effect

Deferred Hiring

Return toward new steady-state

Time

t^S

t^Q

BEFORE

AT

AFTER
Table 2: Expected Impacts Of JCTCs On Employment Growth
By Regime, by Interval
Theoretical Predictions

<table>
<thead>
<tr>
<th>Regime</th>
<th>Before (1)</th>
<th>At (2)</th>
<th>After-Early (3)</th>
<th>After-Late (4)</th>
<th>Total (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed</td>
<td>-</td>
<td>++</td>
<td>+ or -</td>
<td>0 or -</td>
<td>+</td>
</tr>
<tr>
<td>Immediate</td>
<td>N/A</td>
<td>+</td>
<td>+ or -</td>
<td>0 or -</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 4: Estimates Of The Employment Model In Log Levels
Various Lag Lengths For The Lagged Dependent Variables

Panel A: Employment Specified In Log Levels
Equations (23) And (25)

<table>
<thead>
<tr>
<th>J</th>
<th>Θ_J</th>
<th>σ_{Θ_J}</th>
<th>R^2</th>
<th>t-test, Jth Lag</th>
<th>ρ</th>
<th>σ_{ρ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.9734</td>
<td>0.0026</td>
<td>0.9799</td>
<td>368.3510</td>
<td>-0.0200</td>
<td>0.0104</td>
</tr>
<tr>
<td>2</td>
<td>0.9733</td>
<td>0.0026</td>
<td>0.9798</td>
<td>0.7466</td>
<td>-0.0001</td>
<td>0.0105</td>
</tr>
<tr>
<td>3</td>
<td>1.0236</td>
<td>0.0290</td>
<td>0.9796</td>
<td>-2.2351</td>
<td>-0.0026</td>
<td>0.0105</td>
</tr>
<tr>
<td>4</td>
<td>1.1120</td>
<td>0.0580</td>
<td>0.9796</td>
<td>-3.7660</td>
<td>-0.0031</td>
<td>0.0105</td>
</tr>
<tr>
<td>5</td>
<td>1.1790</td>
<td>0.0887</td>
<td>0.9794</td>
<td>-2.4392</td>
<td>-0.0011</td>
<td>0.0105</td>
</tr>
<tr>
<td>6</td>
<td>1.2290</td>
<td>0.1174</td>
<td>0.9792</td>
<td>-1.6640</td>
<td>-0.0014</td>
<td>0.0106</td>
</tr>
<tr>
<td>7</td>
<td>1.3095</td>
<td>0.1491</td>
<td>0.9792</td>
<td>-3.8106</td>
<td>-0.0058</td>
<td>0.0106</td>
</tr>
<tr>
<td>8</td>
<td>1.3269</td>
<td>0.1524</td>
<td>0.9791</td>
<td>-5.0839</td>
<td>-0.0027</td>
<td>0.0106</td>
</tr>
<tr>
<td>9</td>
<td>1.3285</td>
<td>0.1525</td>
<td>0.9791</td>
<td>-3.4147</td>
<td>-0.0027</td>
<td>0.0107</td>
</tr>
<tr>
<td>10</td>
<td>1.3256</td>
<td>0.1561</td>
<td>0.9790</td>
<td>-3.3215</td>
<td>-0.0050</td>
<td>0.0107</td>
</tr>
<tr>
<td>11</td>
<td>1.3408</td>
<td>0.1595</td>
<td>0.9790</td>
<td>-3.8486</td>
<td>-0.0019</td>
<td>0.0107</td>
</tr>
<tr>
<td>12</td>
<td>1.3442</td>
<td>0.1666</td>
<td>0.9787</td>
<td>-3.7749</td>
<td>-0.0031</td>
<td>0.0107</td>
</tr>
</tbody>
</table>

Panel B: Employment Specified In Growth Rates
Equations (24) And (25),

<table>
<thead>
<tr>
<th>J</th>
<th>Θ_J</th>
<th>σ_{Θ_J}</th>
<th>R^2</th>
<th>t-test, Jth Lag</th>
<th>ρ</th>
<th>σ_{ρ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-0.0301</td>
<td>0.0262</td>
<td>0.9219</td>
<td>-1.1464</td>
<td>0.0001</td>
<td>0.0104</td>
</tr>
<tr>
<td>2</td>
<td>-0.0080</td>
<td>0.0320</td>
<td>0.9224</td>
<td>1.4407</td>
<td>-0.0027</td>
<td>0.0105</td>
</tr>
<tr>
<td>3</td>
<td>0.0675</td>
<td>0.0479</td>
<td>0.9231</td>
<td>2.9601</td>
<td>-0.0032</td>
<td>0.0105</td>
</tr>
<tr>
<td>4</td>
<td>0.1661</td>
<td>0.0712</td>
<td>0.9234</td>
<td>1.6288</td>
<td>-0.0014</td>
<td>0.0105</td>
</tr>
<tr>
<td>5</td>
<td>0.2650</td>
<td>0.0981</td>
<td>0.9234</td>
<td>0.8529</td>
<td>-0.0010</td>
<td>0.0106</td>
</tr>
<tr>
<td>6</td>
<td>0.4059</td>
<td>0.1273</td>
<td>0.9240</td>
<td>2.9518</td>
<td>-0.0046</td>
<td>0.0106</td>
</tr>
<tr>
<td>7</td>
<td>0.5691</td>
<td>0.1563</td>
<td>0.9246</td>
<td>4.1367</td>
<td>-0.0019</td>
<td>0.0106</td>
</tr>
<tr>
<td>8</td>
<td>0.5619</td>
<td>0.1553</td>
<td>0.9251</td>
<td>2.2281</td>
<td>-0.0022</td>
<td>0.0106</td>
</tr>
<tr>
<td>9</td>
<td>0.5526</td>
<td>0.1552</td>
<td>0.9256</td>
<td>2.2609</td>
<td>-0.0046</td>
<td>0.0107</td>
</tr>
<tr>
<td>10</td>
<td>0.5801</td>
<td>0.1552</td>
<td>0.9260</td>
<td>2.4793</td>
<td>-0.0010</td>
<td>0.0107</td>
</tr>
<tr>
<td>11</td>
<td>0.6465</td>
<td>0.1565</td>
<td>0.9245</td>
<td>2.5308</td>
<td>-0.0015</td>
<td>0.0106</td>
</tr>
<tr>
<td>12</td>
<td>0.7110</td>
<td>0.1575</td>
<td>0.9241</td>
<td>4.7450</td>
<td>-0.0032</td>
<td>0.0108</td>
</tr>
</tbody>
</table>

Table notes follow the last table.
After 1, 6, 12, and 24 months before and after JCTC Effective Date.

Delayed-Credit states shown in orange/grey; Immediate-Credit states shown in black.
Solid line is 45 degree line.
Raw Data

Average Employment Growth 1 Months Before & After JCTC Effective Date

Average Employment Growth 6 Months Before & After JCTC Effective Date

Average Employment Growth 12 Months Before & After JCTC Effective Date

Average Employment Growth 24 Months Before & After JCTC Effective Date
Average Employment Growth 12 Months Before & After JCTC Effective Date

Refundable credit states shown in orange/grey; Non-refundable credit states shown in black. Solid line is 45 degree line.

Raw Data

Average Employment Growth 12 Months Before & After JCTC Effective Date

No-approval credit states shown in orange/grey; Approval-required credit states shown in black. Solid line is 45 degree line.

Raw Data

Average Employment Growth 12 Months Before & After JCTC Effective Date

Non-capped credit states shown in orange/grey; Capped credit states shown in black. Solid line is 45 degree line.

Raw Data

Kernal Densities of Prob(JCTC signing) by JCTC vs. no-JCTC state-month observations

blue = treated, red = untreated
Employment in Rhode Island Around JCTC Signing and Qualifying Dates

Orange line indicates Signing Date; Black line (at 0) indicates Qualifying Date
Table 1: Post JCTC and Pre-JCTC Employment Growth
T-tests of Equality

Panel A. N = 1 month

<table>
<thead>
<tr>
<th></th>
<th>All JCTC states</th>
<th>Delayed States</th>
<th>Immediate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Pre-JCTC</td>
<td>0.135</td>
<td>0.116</td>
<td>0.146</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Post-JCTC</td>
<td>0.200</td>
<td>0.267</td>
<td>0.192</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Pre Difference</td>
<td>0.065</td>
<td>0.151</td>
<td>0.016</td>
</tr>
<tr>
<td>in Means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-test for equality</td>
<td>(0.164)</td>
<td>(0.108)</td>
<td>(0.423)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference-in-Difference*</td>
<td></td>
<td></td>
<td>0.135</td>
</tr>
<tr>
<td>t-test for equality</td>
<td></td>
<td></td>
<td>(0.104)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B. N = 6 months

<table>
<thead>
<tr>
<th></th>
<th>All JCTC states</th>
<th>Delayed States</th>
<th>Immediate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Pre-JCTC</td>
<td>0.118</td>
<td>0.140</td>
<td>0.080</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Post-JCTC</td>
<td>0.172</td>
<td>0.172</td>
<td>0.172</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Pre Difference</td>
<td>0.054</td>
<td>0.033</td>
<td>0.092</td>
</tr>
<tr>
<td>in Means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-test for equality</td>
<td>(0.062)</td>
<td>(0.241)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference-in-Difference*</td>
<td></td>
<td></td>
<td>0.059</td>
</tr>
<tr>
<td>t-test for equality</td>
<td></td>
<td></td>
<td>(0.183)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel C. N = 12 months

<table>
<thead>
<tr>
<th></th>
<th>All JCTC states</th>
<th>Delayed States</th>
<th>Immediate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Pre-JCTC</td>
<td>0.129</td>
<td>0.140</td>
<td>0.111</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Post-JCTC</td>
<td>0.166</td>
<td>0.169</td>
<td>0.162</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Pre Difference</td>
<td>0.037</td>
<td>0.029</td>
<td>0.051</td>
</tr>
<tr>
<td>in Means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-test for equality</td>
<td>(0.055)</td>
<td>(0.172)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference-in-Difference*</td>
<td></td>
<td></td>
<td>0.022</td>
</tr>
<tr>
<td>t-test for equality</td>
<td></td>
<td></td>
<td>(0.337)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel D. N = 24 months

<table>
<thead>
<tr>
<th></th>
<th>All JCTC states</th>
<th>Delayed States</th>
<th>Immediate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Pre-JCTC</td>
<td>0.133</td>
<td>0.115</td>
<td>0.141</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Post-JCTC</td>
<td>0.154</td>
<td>0.193</td>
<td>0.132</td>
</tr>
<tr>
<td>Employment Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Pre Difference</td>
<td>0.022</td>
<td>0.078</td>
<td>-0.009</td>
</tr>
<tr>
<td>in Means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-test for equality</td>
<td>(0.104)</td>
<td>(0.003)</td>
<td>(0.658)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference-in-Difference*</td>
<td></td>
<td></td>
<td>0.086</td>
</tr>
<tr>
<td>t-test for equality</td>
<td></td>
<td></td>
<td>(0.080)</td>
</tr>
<tr>
<td>(p-value)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: JCTC Adoption Decision
Equation (22)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment growth, prior 3 months</td>
<td>-0.477</td>
<td>-0.294</td>
<td>-0.286</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.730)</td>
<td>(0.725)</td>
<td>(0.738)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment growth, prior 6 months</td>
<td>0.370</td>
<td>0.171</td>
<td>0.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.614)</td>
<td>(0.624)</td>
<td>(0.710)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment growth, prior 12 months</td>
<td>-0.041</td>
<td>0.034</td>
<td>-0.106</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.259)</td>
<td>(0.303)</td>
<td>(0.489)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment Growth, prior 24 months</td>
<td>0.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.171)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative employment growth, prior 3 month</td>
<td>-0.293</td>
<td>-0.286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.728)</td>
<td>(0.741)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative employment growth, prior 6 month</td>
<td>0.169</td>
<td>0.034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.627)</td>
<td>(0.713)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative employment growth, prior 12 month</td>
<td>0.035</td>
<td>-0.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.305)</td>
<td>(0.491)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Employment Growth, prior 24 months</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.172)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPETITION</td>
<td>0.007</td>
<td>0.229***</td>
<td>0.229***</td>
<td>0.235***</td>
<td>0.235***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.085)</td>
<td>(0.085)</td>
<td>(0.087)</td>
<td>(0.087)</td>
</tr>
<tr>
<td></td>
<td>(8.175)</td>
<td>(107.712)</td>
<td>(107.710)</td>
<td>(108.532)</td>
<td>(108.540)</td>
</tr>
<tr>
<td>REPUBLICAN</td>
<td>-0.312</td>
<td>1.374</td>
<td>1.375</td>
<td>1.485</td>
<td>1.483</td>
</tr>
<tr>
<td></td>
<td>(0.602)</td>
<td>(1.365)</td>
<td>(1.365)</td>
<td>(1.457)</td>
<td>(1.457)</td>
</tr>
<tr>
<td>Joint Significance of emp growth lags (p-value)</td>
<td>0.908</td>
<td>0.967</td>
<td>0.968</td>
<td>0.969</td>
<td>0.970</td>
</tr>
<tr>
<td>Observations</td>
<td>7346</td>
<td>2246</td>
<td>2246</td>
<td>1982</td>
<td>1982</td>
</tr>
</tbody>
</table>

*p < 0.10, ** p < 0.05, *** p < 0.01.

Columns 2-5 control for state fixed effects and exclude non-treated states.
<table>
<thead>
<tr>
<th></th>
<th>No Controls or FEs</th>
<th>Add Time FEs</th>
<th>Add State FEs</th>
<th>Add Controls</th>
<th>Drop unknown-rate states</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed Immediate</td>
<td>Delayed Immediate</td>
<td>Delayed Immediate</td>
<td>Delayed Immediate</td>
<td>Delayed Immediate</td>
</tr>
<tr>
<td>Before</td>
<td>-0.338 0.000</td>
<td>-0.190 0.000</td>
<td>-0.348 0.000</td>
<td>-0.357 0.000</td>
<td>-0.445 0.000</td>
</tr>
<tr>
<td></td>
<td>(0.235) (0.000)</td>
<td>(0.137) (0.000)</td>
<td>(0.145) (0.000)</td>
<td>(0.145) (0.000)</td>
<td>(0.160) (0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.151] [0.000]</td>
<td>[0.164] [0.000]</td>
<td>[0.017] [0.000]</td>
<td>[0.014] [0.000]</td>
<td>[0.005] [0.000]</td>
</tr>
<tr>
<td>At</td>
<td>0.193 0.010</td>
<td>0.150 0.030</td>
<td>0.142 0.074</td>
<td>0.148 0.066</td>
<td>0.134 0.017</td>
</tr>
<tr>
<td></td>
<td>(0.080) (0.065)</td>
<td>(0.039) (0.044)</td>
<td>(0.044) (0.049)</td>
<td>(0.042) (0.049)</td>
<td>(0.052) (0.049)</td>
</tr>
<tr>
<td></td>
<td>[0.016] [0.877]</td>
<td>[0.000] [0.499]</td>
<td>[0.001] [0.128]</td>
<td>[0.000] [0.176]</td>
<td>[0.010] [0.733]</td>
</tr>
<tr>
<td>After-Early</td>
<td>-0.114 0.108</td>
<td>-0.110 -0.020</td>
<td>-0.122 0.070</td>
<td>-0.120 0.065</td>
<td>-0.016 0.083</td>
</tr>
<tr>
<td></td>
<td>(0.236) (0.105)</td>
<td>(0.198) (0.077)</td>
<td>(0.181) (0.075)</td>
<td>(0.179) (0.072)</td>
<td>(0.195) (0.092)</td>
</tr>
<tr>
<td></td>
<td>[0.631] [0.302]</td>
<td>[0.577] [0.791]</td>
<td>[0.501] [0.347]</td>
<td>[0.502] [0.369]</td>
<td>[0.935] [0.369]</td>
</tr>
<tr>
<td>After-Late (21m)</td>
<td>1.508 -0.111</td>
<td>0.556 -0.623</td>
<td>0.268 0.287</td>
<td>0.265 0.252</td>
<td>-0.158 -0.122</td>
</tr>
<tr>
<td></td>
<td>(0.564) (0.375)</td>
<td>(0.503) (0.300)</td>
<td>(0.514) (0.342)</td>
<td>(0.510) (0.335)</td>
<td>(0.547) (0.410)</td>
</tr>
<tr>
<td></td>
<td>[0.008] [0.768]</td>
<td>[0.269] [0.038]</td>
<td>[0.602] [0.402]</td>
<td>[0.602] [0.451]</td>
<td>[0.773] [0.766]</td>
</tr>
<tr>
<td>Sum</td>
<td>1.226 0.007</td>
<td>0.393 -0.614</td>
<td>-0.084 0.431</td>
<td>-0.088 0.384</td>
<td>-0.485 -0.022</td>
</tr>
<tr>
<td></td>
<td>(0.628) (0.379)</td>
<td>(0.536) (0.304)</td>
<td>(0.555) (0.358)</td>
<td>(0.553) (0.350)</td>
<td>(0.589) (0.422)</td>
</tr>
<tr>
<td></td>
<td>[0.051] [0.985]</td>
<td>[0.463] [0.044]</td>
<td>[0.880] [0.229]</td>
<td>[0.873] [0.273]</td>
<td>[0.411] [0.958]</td>
</tr>
<tr>
<td>Number of JCTCs</td>
<td>12 7 12 7 12 7 12 7 8 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cells show coefficient, std. error (in parentheses), and p-value [in brackets].
Table 5: Effects of JCTCs on Employment Growth by Regime and Interval
ATE-IPW Estimator
Cumulative Effect Over Each Interval

<table>
<thead>
<tr>
<th>JCTC Measured by Credit Rate</th>
<th>JCTC Measured by Effective Credit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed</td>
</tr>
<tr>
<td>Before</td>
<td>-7.579</td>
</tr>
<tr>
<td></td>
<td>(2.682)</td>
</tr>
<tr>
<td></td>
<td>[0.005]</td>
</tr>
<tr>
<td>At</td>
<td>1.534</td>
</tr>
<tr>
<td></td>
<td>(1.454)</td>
</tr>
<tr>
<td></td>
<td>[0.291]</td>
</tr>
<tr>
<td>After-Early</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>(4.299)</td>
</tr>
<tr>
<td></td>
<td>[0.991]</td>
</tr>
<tr>
<td>After-Late (21m)</td>
<td>-0.944</td>
</tr>
<tr>
<td></td>
<td>(9.793)</td>
</tr>
<tr>
<td></td>
<td>[0.923]</td>
</tr>
<tr>
<td>Sum</td>
<td>-6.928</td>
</tr>
<tr>
<td></td>
<td>(10.844)</td>
</tr>
<tr>
<td></td>
<td>[0.523]</td>
</tr>
<tr>
<td>Number of JCTCs</td>
<td>8</td>
</tr>
</tbody>
</table>

INDUSTRY MIX -0.053 -0.053
(0.014) (0.014)
[0.000] [0.000]

CORP TAX RATE -1.578 -1.578
(0.539) (0.539)
[0.003] [0.003]

COMPETITION -0.243 -0.243
(0.123) (0.123)
[0.049] [0.049]

REPUBLICAN -0.004 -0.004
(0.012) (0.012)
[0.763] [0.764]

Cells show coefficient, std. error (in parentheses), and p-value [in brackets].
Table 6: Effects of JCTCs on Employment Growth by Regime and Interval

Alternative AFTER-LATE lengths
ATE-IPW Estimator
Cumulative Effects Over Each Interval
JCTC Measured By Indicator Variable
Includes Two-Way Fixed Effects And Controls

<table>
<thead>
<tr>
<th></th>
<th>AFTER-LATE = 9m</th>
<th></th>
<th>AFTER-LATE = 21m</th>
<th></th>
<th>AFTER-LATE = 33m</th>
<th></th>
<th>AFTER-LATE = 45m</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed</td>
<td>Immediate</td>
<td>Delayed</td>
<td>Immediate</td>
<td>Delayed</td>
<td>Immediate</td>
<td>Delayed</td>
<td>Immediate</td>
</tr>
<tr>
<td>Before</td>
<td>-0.370</td>
<td>0.000</td>
<td>-0.357</td>
<td>0.000</td>
<td>-0.396</td>
<td>0.000</td>
<td>-0.401</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.000)</td>
<td>(0.145)</td>
<td>(0.000)</td>
<td>(0.165)</td>
<td>(0.000)</td>
<td>(0.175)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.011]</td>
<td>[0.000]</td>
<td>[0.014]</td>
<td>[0.000]</td>
<td>[0.016]</td>
<td>[0.000]</td>
<td>[0.022]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>At</td>
<td>0.146</td>
<td>0.065</td>
<td>0.148</td>
<td>0.066</td>
<td>0.150</td>
<td>0.071</td>
<td>0.153</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.049)</td>
<td>(0.042)</td>
<td>(0.049)</td>
<td>(0.042)</td>
<td>(0.049)</td>
<td>(0.043)</td>
<td>(0.049)</td>
</tr>
<tr>
<td></td>
<td>[0.001]</td>
<td>[0.180]</td>
<td>[0.000]</td>
<td>[0.176]</td>
<td>[0.000]</td>
<td>[0.148]</td>
<td>[0.000]</td>
<td>[0.134]</td>
</tr>
<tr>
<td>After-Early</td>
<td>-0.094</td>
<td>0.059</td>
<td>-0.120</td>
<td>0.065</td>
<td>-0.121</td>
<td>0.059</td>
<td>-0.119</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(0.181)</td>
<td>(0.074)</td>
<td>(0.179)</td>
<td>(0.072)</td>
<td>(0.179)</td>
<td>(0.072)</td>
<td>(0.180)</td>
<td>(0.073)</td>
</tr>
<tr>
<td></td>
<td>[0.060]</td>
<td>[0.420]</td>
<td>[0.502]</td>
<td>[0.369]</td>
<td>[0.498]</td>
<td>[0.412]</td>
<td>[0.508]</td>
<td>[0.359]</td>
</tr>
<tr>
<td>After-Late</td>
<td>-0.190</td>
<td>0.134</td>
<td>0.265</td>
<td>0.252</td>
<td>0.694</td>
<td>1.055</td>
<td>1.525</td>
<td>1.473</td>
</tr>
<tr>
<td></td>
<td>(0.339)</td>
<td>(0.193)</td>
<td>(0.510)</td>
<td>(0.335)</td>
<td>(0.647)</td>
<td>(0.488)</td>
<td>(0.844)</td>
<td>(0.691)</td>
</tr>
<tr>
<td></td>
<td>[0.575]</td>
<td>[0.488]</td>
<td>[0.602]</td>
<td>[0.451]</td>
<td>[0.284]</td>
<td>[0.031]</td>
<td>[0.071]</td>
<td>[0.033]</td>
</tr>
<tr>
<td>Sum</td>
<td>-0.533</td>
<td>0.259</td>
<td>-0.088</td>
<td>0.384</td>
<td>0.350</td>
<td>1.186</td>
<td>1.204</td>
<td>1.614</td>
</tr>
<tr>
<td></td>
<td>(0.383)</td>
<td>(0.204)</td>
<td>(0.553)</td>
<td>(0.350)</td>
<td>(0.696)</td>
<td>(0.506)</td>
<td>(0.892)</td>
<td>(0.706)</td>
</tr>
<tr>
<td></td>
<td>[0.165]</td>
<td>[0.206]</td>
<td>[0.873]</td>
<td>[0.273]</td>
<td>[0.615]</td>
<td>[0.019]</td>
<td>[0.177]</td>
<td>[0.022]</td>
</tr>
<tr>
<td>Number of JCTCs</td>
<td>12</td>
<td>7</td>
<td>12</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

Cells show coefficient, std. error (in parentheses), and p-value [in brackets].
<table>
<thead>
<tr>
<th></th>
<th>AFTER-LATE = 9m</th>
<th>AFTER-LATE = 21m</th>
<th>AFTER-LATE = 33m</th>
<th>AFTER-LATE = 45m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed</td>
<td>Immediate</td>
<td>Delayed</td>
<td>Immediate</td>
</tr>
<tr>
<td>Before</td>
<td>-8.696</td>
<td>0.000</td>
<td>-8.427</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(2.964)</td>
<td>(0.000)</td>
<td>(2.978)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
<td>[0.000]</td>
<td>[0.005]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>At</td>
<td>1.580</td>
<td>0.098</td>
<td>1.623</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>(1.516)</td>
<td>(1.078)</td>
<td>(1.515)</td>
<td>(1.092)</td>
</tr>
<tr>
<td></td>
<td>[0.297]</td>
<td>[0.928]</td>
<td>[0.284]</td>
<td>[0.859]</td>
</tr>
<tr>
<td>After-Early</td>
<td>-10.728</td>
<td>-10.940</td>
<td>-0.986</td>
<td>1.166</td>
</tr>
<tr>
<td></td>
<td>[0.068]</td>
<td>[0.312]</td>
<td>[0.923]</td>
<td>[0.969]</td>
</tr>
<tr>
<td></td>
<td>[0.022]</td>
<td>[0.495]</td>
<td>[0.495]</td>
<td>[0.911]</td>
</tr>
<tr>
<td></td>
<td>[0.022]</td>
<td>[0.495]</td>
<td>[0.495]</td>
<td>[0.911]</td>
</tr>
<tr>
<td>Number of JCTCs</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Cells show coefficient, std. error (in parentheses), and p-value [in brackets].
Table 8: Average Impact and Delayed Effects of JCTCs

<table>
<thead>
<tr>
<th></th>
<th>(All JCTC States)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At</td>
<td>0.072</td>
<td>(0.035)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After-Early</td>
<td>-0.018</td>
<td>(0.074)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After-Late (21m)</td>
<td>0.418</td>
<td>(0.281)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>0.472</td>
<td>(0.290)</td>
</tr>
<tr>
<td></td>
<td>Number of JCTCs</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Table 9: Effects of JCTCs on Employment Growth by Regime and Interval
ATE-IPW Estimator
Cumulative Effects Over Each Interval
JCTC Measured By Indicator Variable

<table>
<thead>
<tr>
<th></th>
<th>Including Rhode Island</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed</td>
</tr>
<tr>
<td>Before</td>
<td>-0.523</td>
</tr>
<tr>
<td></td>
<td>(0.206)</td>
</tr>
<tr>
<td></td>
<td>[0.011]</td>
</tr>
<tr>
<td>At</td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
</tr>
<tr>
<td></td>
<td>[0.012]</td>
</tr>
<tr>
<td>After-Early</td>
<td>-0.151</td>
</tr>
<tr>
<td></td>
<td>(0.173)</td>
</tr>
<tr>
<td></td>
<td>[0.383]</td>
</tr>
<tr>
<td>After-Late</td>
<td>-0.142</td>
</tr>
<tr>
<td></td>
<td>(0.542)</td>
</tr>
<tr>
<td></td>
<td>[0.793]</td>
</tr>
<tr>
<td>Sum</td>
<td>-0.633</td>
</tr>
<tr>
<td></td>
<td>(0.598)</td>
</tr>
<tr>
<td></td>
<td>[0.290]</td>
</tr>
<tr>
<td>Number of JCTCs</td>
<td>12</td>
</tr>
</tbody>
</table>

Cells show coefficient, std. error (in parentheses), and p-value [in brackets].
Table 10: Effects of JCTCs on Industry Employment Growth by Regime and Interval

ATE-IPW Estimator
Cumulative Effects Over Each Interval
JCTC Measured By Indicator Variable
Includes Two-Way Fixed Effects But No Controls

<table>
<thead>
<tr>
<th></th>
<th>Total Private</th>
<th>Retail</th>
<th>Leisure</th>
<th>Trade</th>
<th>Educ & Health</th>
<th>Prof Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed</td>
<td>Immediate</td>
<td>Delayed</td>
<td>Immediate</td>
<td>Delayed</td>
<td>Immediate</td>
</tr>
<tr>
<td>Before</td>
<td>-0.357</td>
<td>0.000</td>
<td>-0.394</td>
<td>0.000</td>
<td>0.176</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.000)</td>
<td>(0.249)</td>
<td>(0.000)</td>
<td>(0.388)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.014]</td>
<td>[0.000]</td>
<td>[0.113]</td>
<td>[0.000]</td>
<td>[0.650]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>At</td>
<td>0.148</td>
<td>0.066</td>
<td>-0.004</td>
<td>0.082</td>
<td>-0.210</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.049)</td>
<td>(0.161)</td>
<td>(0.097)</td>
<td>(0.284)</td>
<td>(0.149)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.176]</td>
<td>[0.980]</td>
<td>[0.399]</td>
<td>[0.458]</td>
<td>[0.844]</td>
</tr>
<tr>
<td>After-Early</td>
<td>-0.120</td>
<td>0.065</td>
<td>-0.173</td>
<td>0.183</td>
<td>0.047</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td>(0.072)</td>
<td>(0.255)</td>
<td>(0.178)</td>
<td>(0.301)</td>
<td>(0.311)</td>
</tr>
<tr>
<td></td>
<td>[0.502]</td>
<td>[0.369]</td>
<td>[0.498]</td>
<td>[0.303]</td>
<td>[0.875]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>After-Late (21m)</td>
<td>0.265</td>
<td>0.252</td>
<td>-0.460</td>
<td>0.609</td>
<td>0.438</td>
<td>1.024</td>
</tr>
<tr>
<td></td>
<td>(0.510)</td>
<td>(0.350)</td>
<td>(0.860)</td>
<td>(0.794)</td>
<td>(1.099)</td>
<td>(0.887)</td>
</tr>
<tr>
<td></td>
<td>[0.602]</td>
<td>[0.451]</td>
<td>[0.593]</td>
<td>[0.387]</td>
<td>[0.690]</td>
<td>[0.248]</td>
</tr>
<tr>
<td>Sum</td>
<td>-0.088</td>
<td>0.384</td>
<td>-1.058</td>
<td>0.874</td>
<td>0.463</td>
<td>1.049</td>
</tr>
<tr>
<td></td>
<td>(0.553)</td>
<td>(0.350)</td>
<td>(1.009)</td>
<td>(0.715)</td>
<td>(1.252)</td>
<td>(0.968)</td>
</tr>
<tr>
<td></td>
<td>[0.873]</td>
<td>[0.273]</td>
<td>[0.294]</td>
<td>[0.222]</td>
<td>[0.711]</td>
<td>[0.279]</td>
</tr>
<tr>
<td>Number of JCTCs</td>
<td>12</td>
<td>7</td>
<td>12</td>
<td>7</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

Cells show coefficient, std. error (in parentheses), and p-value [in brackets].