Measuring the price elasticity of import demand in the destination markets of Italian exports∗

Alberto Felettigha and Stefano Federicob

Abstract

The aim of this paper is to compare the price elasticity of import demand in the destination markets (defined as country-product combinations) of Italian exports to the price elasticity in the destination markets of the other main euro area countries’ exports. To this purpose, we use the elasticities of substitution across varieties estimated for each destination market as in Feenstra (1994) and Broda, Greenfield and Weinstein (2006). We find that Italy exports to markets which have, on average, a lower price elasticity than the markets where France, Germany and Spain sell their exports. The sectoral and geographical composition of Italian exports therefore seems to expose them to a relatively inelastic demand, contrary to the indications of part of the literature. We re-estimate a set of crucial elasticities of substitution out of the 11300 published by Broda, Greenfield and Weinstein (2006), using a different data source and alternative estimation methods. Our main results are robust to the inclusion of the re-estimated elasticities.

Table of contents:

1. Introduction and main results.. 1
2. Methodology ... 4
3. Data ... 5
4. Main results... 8
5. Results on sectoral and geographical decomposition 10
6. Conclusions... 15
References... 17
Appendix... 18
Tables and Figures .. 21

1. Introduction and main results

Italy’s export performance over the past decade has been the object of extensive research. The literature has repeatedly pointed out a puzzling feature of Italian exports: on the one side, Italy’s specialisation in traditional products implies a deeper exposure to the increasing competition from emerging countries (see for example Lissovolik, 2008); on the other side, Italian exporters seem to

∗ The authors thank Matteo Bugamelli, Marco Magnani and Roberto Tedeschi for useful comments. The views expressed by the authors do not necessarily reflect those of the Banca d’Italia.

a Banca d’Italia. Email: alberto.felettigh@bancaditalia.it
b Banca d’Italia. Email: stefano.federico@bancaditalia.it
enjoy extensive pricing power (see for example de Nardis and Pensa, 2004). This paper adds a new piece of evidence on this issue, implementing a novel methodology to investigate whether the sectoral and geographical composition of Italian exports exposes them to markets with a more price-elastic demand, relatively to the other main euro area countries\(^1\).

The starting point of our work is to measure the price elasticity of import demand in each of the destination markets (defined as a country-product combination) of Italian exports. The elasticities are estimated by Broda and Weinstein (2006, BW henceforth) and Broda, Greenfield and Weinstein (2006, BGW henceforth), using an approach similar to the one proposed by Feenstra (1994). The basic assumption is that, for each importing country and each product, imports supplied by different countries are different varieties of the product, as in Armington (1969). To give just one example, for the product “white wine” imported by Germany, all French white wines are one variety of this product, all Italian white wines are another variety of the same product, and so on for each of the other countries. Assuming that the utility function of the importing country can be represented by a Dixit-Stiglitz constant-elasticity-of-substitution (DS-CES) function, Feenstra shows how to use trade data in order to estimate the elasticity of substitution among the different varieties of a given product for a given importing country\(^2\).

A remarkable feature of this parameter is that it can also be interpreted, under the maintained assumptions, as the price elasticity of demand for a given product exported by any origin country to a given destination country: if the elasticity of substitution by German consumers between Italian white wine and French white wine is \(\sigma\), then \(\sigma\) can also be interpreted as the price elasticity facing Italian and French white wine producers exporting to Germany (we shall indicate as \(\sigma_{jk}\) the import “demand elasticity” for product \(j\) in importing country \(k\)).

We compute an import “demand elasticity” for each destination market where Italy exports. Weighting these “demand elasticities” with each market’s share in Italian exports, it is then possible to obtain an average price elasticity of import demand to which Italian exports are exposed (\(\eta\), “export elasticity” for future reference). This exercise has been replicated for the exports of the other main euro area countries (France, Germany and Spain) over the sample period 1994-2008. For

\(^1\) For recent surveys on a comparative evaluation of the export performance of the main euro area countries, see for example Lissovolik (2008), Felettigh et al. (2006), European Central Bank (2005).

\(^2\) By construction, the estimates capture the substitutability between two varieties of a given good, but neglect the substitutability between imported goods and domestic goods. In other words, “domestic production is not a competing variety”. Carrying on with the previous example, the domestic pricing of German white wine is assumed to be irrelevant for the elasticity of substitution between French white wine and Italian white wine on the German market.
each of these four countries, the sectoral and geographical composition of exports is combined into a single composite good (“exports of goods”, in the macroeconomic sense of the term); we obtain an average “export elasticity” for each year. Notice that “export elasticities” are defined as weighted averages of the import “demand elasticities”.

Our main finding is that the “export elasticity” of Italian goods is on average lower than the “export elasticity” of French, German and Spanish goods. The evidence is quite robust to using alternative estimation methods. The sectoral and geographical composition therefore seems to expose Italian exports to markets with a less elastic demand compared to the other main competitors. Specifically, Italy’s main specialisation sectors such those producing “traditional goods” and “machinery and equipment” tend to show relatively low “demand elasticities”, except for leather products and, to a lesser extent, textiles. This stands in contrast with higher elasticities in sectors such as “motor vehicles” and “other transport vehicles”, which are more heavily represented in the other main competitors’ exports. Our findings would therefore indicate that the pricing power of Italian exporters has more than offset, over our sample period, the downward pressures on export price elasticities exerted by the increasing competition from emerging countries. Trade among the four highly integrated countries under exam is one of the main drivers for the elasticity of their overall exports. Only for Spain do we find that bilateral trade flows contribute to significantly increase the elasticity of Spanish exports.

In order to better qualify our findings, a few comments are needed. First, we are not claiming that Italian exports face a less elastic demand due to their own intrinsic characteristics, i.e. their quality or other product attributes (branding, post-sale assistance and other non-price competitiveness determinants). Our estimates only capture a “composition effect”, which comes from the sectoral and geographical specialisation. We do not estimate a measure of market power specific to the Italian exporters, as for example in de Nardis and Pensa (2004).

Second, the price elasticity of import demand in the destination markets we estimate can only be interpreted as a “price elasticity of exports” under a specific set of assumptions. In particular, we need to assume preferences à la Dixit-Stiglitz. In this case, the estimated parameter measures how much overall “exports of goods” would decrease in volume terms if export prices of each product simultaneously increased by 1 per cent, ceteris paribus (the “all else constant” clause requires, in
particular, that competitors’ prices\(^3\) remain unchanged, and that the share of the exporting country in the import volumes of the various destination countries is small enough that the simultaneous price increase does not affect their overall import price index. However, a crucial assumption in the Dixit-Stiglitz framework is that, for a given importing country and a given product, the elasticity of substitution is constant across all origin countries. This assumption is admittedly quite restrictive, in the light of the evidence pointing to large differences in unit values across origin countries, even within finely disaggregated product categories (see Schott 2004 and, with a focus on Italy, Monti 2005). These large differences in unit values could derive from differences in countries’ degree of market power, quality or other non-price competitiveness factors, which are not captured by the simplified Dixit-Stiglitz framework.

Finally, although we join an extensive literature in defining varieties à la Armington (1969), the limitations of such a definition are apparent. The estimated elasticities may change significantly under different definitions of variety. Interestingly however, we shall see that the elasticities estimated by Blonigen and Soderbery (2009) are really close to those proposed by BW, despite the fact that the former paper, by focusing on the US auto market, is able to adopt a more convincing definition of variety.

The rest of the paper is structured as follows. Section 2 presents the methodology, while section 3 describes the dataset, including the estimation of the elasticities of substitution. The results are discussed in section 4.

2. Methodology

The overall “export elasticity” for a given country \(i\) is computed as a weighted average of the “demand elasticities” in each market (defined as a country-sector combination). The weights are given by the share of each market on total exports of country \(i\). Formally, the “export elasticity” in year \(t\) is defined as:

\[
\eta_{i,t} = \sum_{jk} \sigma_{jk} \frac{EXP_{i,t,jk}}{\sum_{jk} EXP_{i,t,jk}},
\]

\(^3\) Competitors should include firms in the destination country that produce for the domestic market. Recall however from footnote 2 that “domestic production is not a competing variety” in Feenstra’s framework.
where j indexes export products, k indexes destination countries for country i’s exports, σ_{jk} is the estimated “demand elasticity” for product j in importing country k and $\text{EXP}_{i,t,jk}$ is the value of exports of product j from country i to country k in year t. We estimate $\eta_{i,t}$ for four countries i (Italy, France, Germany and Spain), with t running from 1994 to 2008. A similar methodology has been applied by Kang (2008) to the exports of three Asian countries (China, Japan and South Korea) for the years 1984-2004. In the following, we shall sometimes try to avoid confusion by referring to σ_{jk} and $\eta_{i,t}$ as “demand elasticity” and “export elasticity”, respectively.

The “demand elasticities” σ_{jk} are estimated assuming that they are constant both across time and across origin countries for any given product. The first assumption implies that $\eta_{i,t}$ changes over time, for a given i, only because of variations in the composition of i’s exports across destination countries and sectors. In a similar fashion, the second assumption implies that, in any given year, comparisons across exporting countries only depend on differences in the composition of exports. Note that differences in the geographical composition include the “asymmetric effects” which are related to the fact that, by definition, a country does not export to itself. For example, Italy’s $\eta_{i,t}$ is affected by the elasticities of substitution among varieties in the German market, while Germany’s $\eta_{i,t}$ is not, as Germany does not export to itself.

3. Data

As it is clear from equation (1), in order to apply the methodology described in the previous section, two sets of data are needed: 1) a measure of “demand elasticity” for each country-product combination; 2) the composition of exports, by country and product, for the four main euro area countries.

3.1 Elasticities of substitution among varieties (“demand elasticities”)

The primary source for the elasticities of substitution among varieties is the estimates provided by BGW, whose approach is largely based on Feenstra. The idea is to estimate these elasticities by exploiting the cross-section and panel information available in trade data, rather than using

4 The elasticities σ_{ik} are estimated over a shorter sample period (1994-2005), for technical reasons detailed in the appendix.
instruments. This method, which only requires quantities and values of imported goods (see the appendix for a detailed presentation), has been applied, with some modifications, in two related works: BW (on more than 10,000 products imported by the United States) and BGW (on 73 importing countries and 171 products). These elasticities have been used in many papers and “are becoming something of an industry standard for studies that require an estimate of the price elasticity of import demand” (Hummels et al., 2009, p. 95). The only differences between the BGW approach and the celebrated contribution of Feenstra are in the remedies envisaged for dealing with heteroskedasticity of the residuals and measurement error in import prices.

The set of countries for which BGW estimates are available includes all the main countries in the world; the most relevant exceptions are Belgium, Bulgaria, Czech Republic, Iran, Israel, Russia, Singapore and Taiwan. The industry classification chosen by BGW corresponds to the first three digits of the Harmonized System (HS) codes and includes 171 sectors. While this level of disaggregation is quite detailed, there are two critical issues. Firstly, it does not always correspond to fully consistent product aggregations: the logical structure of HS is based on chapters (first two digits) and positions (first four digits). Secondly, the level of disaggregation is not homogeneous with trade volumes, with a few sectors which cover a significant share of international trade. For instance, just a single product (the 3-digit HS code “870”, which includes transport vehicles and equipment) represented 22 per cent of Spanish exports and 18 per cent of German exports in 2006. Symmetrically, some of the 171 products are quite negligible in the export flows of the four countries under exam.

The elasticities estimated by BGW span from 1 to 16808. While the estimates are bounded below by 1, consistently with the theoretical assumptions about the DS-CES utility function, very large elasticities signal that varieties tend to be undifferentiated and perfectly substitutable. We choose to correct BGW elasticities using a trimming procedure which cuts to 30 all estimates larger than 30. The reason is that, as pointed out by Mohler (2009), an elasticity close to 20 or 30 has approximately the same impact on the level of utility derived from a CES utility function as an elasticity of 100 or even 1,000. This stems from the way the elasticity enters the utility function (see the exponential terms in equation (A1) in the Appendix). Beyond a certain threshold, therefore, differences in the values of the elasticities are not meaningful in economic terms. Furthermore, when we initially used the original BGW elasticities, an extremely small number of very high values turned out to have a very large impact on the weighted “export elasticity” \(\eta_i \); for instance, just one “demand elasticity” (the 3-digit HS code “870” in the Italian market) contributed between
one half and almost three quarters to the estimated average price elasticity for French, German and Spanish exports, leading to average “export elasticities” unrealistically much higher than those we estimated for Italy (with Spain having an average “export elasticity” five times as large as Italy’s). Our results are robust to alternative thresholds (20 and 50); further robustness checks are discussed below.

Special care has been given to the “demand elasticities” in the four countries under study, due to the “asymmetric effects” discussed above (letting \(j \) and \(k \) index either of the four countries, our weighted elasticity \(\eta_{i,t} \) is affected by the elasticities of substitution among varieties in country \(k \neq j \), while \(\eta_{k,t} \) is not, as country \(k \) does not export to itself). These are especially relevant for our weighted “export elasticities” since the four economies are closely integrated, leading to substantial trade flows among them: for example, Italy’s two main export markets are indeed Germany and France. As a robustness check, we estimated the elasticities of substitution among varieties in the four countries according to three alternative methods, in addition to the original BGW elasticities (see Table 1)\(^5\): 1) the BGW method applied on Eurostat data and a longer time span (1994-2005, BGW_9405 hereafter); 2) the Feenstra method, defining the varieties at the 6-digit level of the Harmonised System, as in BGW (Feenstra_HS6 hereafter); 3) the Feenstra method, defining the varieties at the 3-digit level (Feenstra_HS6 hereafter). See the appendix for details on the estimation methods.\(^6\) Our estimations confirm the analysis by Mohler (2009), who finds that individual elasticities of substitution can be quite sensitive to the estimation method. We shall see, however, that individual differences are very much muted by the weighting process leading to the computation of the “export elasticities”.

3.2 Export composition

Export shares as defined in equation (1) are computed using Eurostat data on exports in value terms for Italy, France, Germany and Spain over the years 1994-2008. For each of the four countries, Eurostat publishes annual export flows disaggregated by product (defined at the 8-digit level of the Combined Nomenclature\(^7\)) and destination country (around 250 destinations in total). Exports in our dataset represent on average between 80 and 90 per cent of total exports from each country in the period under study (Table 2). The incomplete coverage depends on: a) exports to countries not

\(^5\) We thank David Weinstein and Christian Broda for sharing their codes with us.

\(^6\) The Feenstra method may produce values of the elasticities which are not admissible (i.e. lower than unity). When this happened (5 to 10 per cent of the cases in our sample), we replaced the estimated values with the BGW elasticities.

\(^7\) The Harmonized System stops at the 6-digit detail; the 8-digit detail is only available in the Combined Nomenclature.
included among the 73 countries in the BGW elasticities dataset; b) exports to countries included among the 73 countries but referring to products for which BGW elasticities were not estimated; c) exports with non-numeric codes in Eurostat data, which reflect confidential data or other special categories.

Before presenting our main results, it is useful to evaluate how different the sectoral and geographical composition is among the four countries under exam. We compute the share on total exports from a given country for each destination-product pair (where products are defined at the 3-digit HS level, consistently with the level of detail available for the elasticities of substitution among varieties). Table 3 reports simple correlation coefficients among the export shares in the last year of our sample (2008). Overall, the export shares show a positive correlation, although not a very strong one, ranging from 0.474 to 0.748. Note that these correlation coefficients tend to be increasing over time: a similar computation for the previous years would therefore yield even smaller values.

4. Main results

Figure 1 reports the average “export elasticity” for the main four euro area countries over the years 1994-2008, computed according to equation (1). In each panel of Figure 1 the underlying “demand elasticities” over country-product combinations (the σ_{jk}’s) for all countries other than Italy, France, Germany and Spain are the BGW elasticities. When the destination market is one of the four euro area countries, the “demand elasticities” are estimated with one of the four methods indicated in Table 1, as labelled by the title of the panel itself. As explained in the previous section, all elasticities are trimmed to 30.

Starting with panel 1.A (BGW method), the average “export elasticity” is the lowest for Italy and the highest for Germany and Spain, while it is in an intermediate range for France. Looking at the dynamics over time, there is a very slight upward trend for Italy (from 5.3 in 1994 to 5.6 in 2008). France shows a hump-shaped pattern, first rising from 6.4 in 1994 to 7.0 in 1999 and then decreasing to 6.1 in 2008. A similar pattern is also found for Spain (which reaches a peak of 7.8 in 1999 and then falls down to 7.0 in 2008) and for Germany (which rises from 7.0 in 1994 to 7.9 in
2002 and then decreases to 7.4 in 2008). Recall that dynamics only emerge due to the varying composition of exports, since the underlying “demand elasticities” (the \(\sigma_{jk}\)’s) are time-invariant.

Turning to the other three panels of Figure 1, one may notice some variability across the estimation methods. In levels, the average “export elasticity” tends to be the lowest when it is measured with the Feenstra_HS3 method (panel 1.D)\(^8\) and the highest with the BGW_9405 method (panel 1.B). For Italy, the average elasticity in 2008 ranges from 5.7 with the former method to 6.2 with the Feenstra_HS6 method (panel 1.C) and 6.6 with the BGW_9405 method. There are also differences in terms of dispersion of the estimated elasticities: the average gap between the country with the highest elasticity and the country with the lowest one is 2.5 for the BGW_9405 method, while it is about 1 for the Feenstra_HS3 method (1.2 for the Feenstra_HS6 method).

Despite these differences, the country rankings are generally consistent across the various estimation methods. In particular, Italy turns out to be the country with the lowest “export elasticity” in every year and in every specification. Only in one case (Feenstra_HS6) there appears to be no difference relative to France, but only towards the end of the sample. Among the other countries, France tends to have a lower elasticity, while Germany shows a higher elasticity, with Spain being in between the two countries. The ranking changes only with the Feenstra_HS3 method, where Spain has a lower elasticity than France over most of the period, and with the BGW_9405 method, where Spain has the highest elasticity. Overall, anyway, the evidence pointing to Italy as the country with the lowest “export elasticity” is very robust. Also the dynamics of the average elasticities over time appear to be largely independent of the estimation method. Looking at time averages, Italy has the smallest average “export elasticity”, ranging from 5.5 to 6.5 depending on the estimation method. Relative to this benchmark, the average gap we estimate ranges between 0.4 and 1.0 for France, between 1.0 and 2.0 for Germany, between 0.5 and 2.5 for Spain.

An important question to be asked is whether such differences in the “export elasticities” are economically meaningful. In 2008 we estimate that the price elasticity of Italian exports (for the composite bundle “exports of goods”) is 5.6 (using the BGW method), which would imply a constant mark-up over marginal costs around 22 per cent.\(^9\) As a comparison, the corresponding mark-up for Spain and Germany (with elasticities equal to 7.0 and 7.5 respectively) would be of

\(^8\) This result is in line with the BGW finding that the elasticity of substitution among varieties increases when moving toward finer product definitions, the intuition being that varieties become less substitutable in the agents’ preferences.

\(^9\) Using the standard relationship between prices and marginal costs: \(p = (\sigma / (\sigma - 1)) mc\), where \(\sigma\) is the estimated price elasticity of exports.
about 17 and 15 per cent, respectively. Although these magnitudes look reasonable, the difference in mark-ups implied by different “export elasticities” is not negligible and could have potentially relevant consequences in terms of price levels and efficiency. For instance, a one per cent difference in mark-ups between country 1 and country 2 means that either the two countries share the same cost structure and country 1 exports are (roughly) one per cent more expensive, or country 1 needs its marginal costs to be (roughly) one per cent below country 2’s marginal costs in order to match its export prices.

Similarly, differences in the dynamics of the “export elasticity” can be mapped into (theoretical) differences in the rate of growth of export prices (unit values), with a downward trend for the “export elasticity” translating into an upward trend for mark-ups\(^{10}\), thus adding a source of inflation to the one stemming from marginal costs. We shall not try and pursue international comparisons along these lines any further, since standard mark-up theory may perform very poorly in the present contest. Indeed, recall that we are dealing with a composite good named “exports” so that, even if one is willing to take for granted our estimated “export elasticities”, marginal costs cannot be realistically assumed to be comparable across countries or time, since they depend not only on the state of technology, but also on the composition of aggregate output by product (not to mention the country of origin for imported inputs and local prices for the international immobile factors of production).

5. Results on sectoral and geographical decomposition

We now investigate the contribution of various sectors and destination countries to the overall “export elasticity”. In doing so, we shall focus on the most robust of our results, by looking at the time-average levels of our estimated “export elasticities”. We consider exclusively the BGW elasticities, since they are very close to the Feenstra_HS6 elasticities and represent an intermediate case between the high dispersion arising from the BGW_9405 elasticities and the low dispersion ensuing from the Feenstra_HS3 method (see Figure 1).

We start by considering the time-average between 1994 and 2008, which only requires to drop time indices in equation (1) and to consider the 14-year span as a single period (thanks to the maintained

\(^{10}\) Note from the previous footnote that the mark-up \(\sigma / (\sigma-1)\) is inversely related to \(\sigma\), since it can be rewritten as \(1 + \frac{1}{(\sigma-1)}\).
assumption that the elasticities of substitution among varieties σ_{jk} are time-invariant). We next aggregate the 171 products into 17 sectors and re-define the terms on the right-hand side of equation (1) – after dropping time indices - so that it can be used for j indexing sectors (rather than products). For the share on total exports, it suffices to add the shares of all products falling into a given sector. As for the estimated elasticity of substitution among varieties of sector j in the importing country k, we re-define σ_{jk} ("sectoral elasticity" hereafter) as a weighted average of the “demand elasticities” of all products falling into a given sector, with weights given by the relative importance of each product.

At this stage we have the contributions to the overall “export elasticity” η_i disaggregated by market, defined as a sector-destination pair. By collapsing the destination-country dimension of this two-way table, we obtain the sectoral decomposition of the overall “export elasticity”. Vice-versa, we obtain the geographical decomposition of the overall “export elasticity” by collapsing the sector dimension.

5.1 Sectoral decomposition

We start with the sectoral decomposition, summarized in Table 4. The last four columns report, for each of the four euro area countries, the sectoral contribution – expressed in percentage terms – to the overall “export elasticity” η_i of the country (the levels of the four elasticities η_i are reported on the last row of the first four columns). The middle block of columns reports, for each country, the percentage share of exports in each sector on total exports. The first block of columns reports, for each country, the “sectoral elasticities”. The bubble graphs in Figure 2 provide a graphical representation of Table 4, with “sectoral elasticities” on the horizontal axis and sectoral export shares on the vertical axis. The size of the bubbles is proportional to the sectoral contributions to the overall “export elasticity”; the reader should be aware that it is not comparable across countries.

Table 4 reveals that the variability is mainly between sectors, rather than within sectors. At this level of aggregation the sectoral profiles of the four countries are very similar, with correlation coefficients ranging between 0.92 and 0.99. Relatively high elasticities (first four columns) are found for “Motor vehicles, trailers and semi-trailers” and “Other transport equipment” (always above 10 in both cases, for any of the four countries) and for “Minerals and mineral products” (between 5 and 8). The evidence for the latter sector is consistent with BW’s conjecture that varieties of goods traded on organized exchanges (such as commodities) should be more
substitutable than varieties of other goods. The other sectors tend to show elasticities between 3.5 and 6. The lowest values are found for “Wearing apparel”, “Wood and products of wood”, “Non-metallic mineral products” and “Computer, electronic and optical products”. As for technological intensity, note that standard classifications, such as low-technology versus high-technology goods, are not clearly correlated with sectoral elasticities.

The next block of columns, one for each of the four countries, shows each sector’s share on total exports. There is now a greater variability within sectors, reflecting differences in specialisation patterns among the four euro area countries. As it is well known, sectors producing “traditional” goods such as “Textiles”, “Wearing apparel”, “Leather and related products” and “Furniture and other manufacturing” have a much larger share in Italian exports than in the other countries’ exports; Italy is also specialised in “Machinery and equipment”, whose share on total exports is the largest among the four countries. Notice that the elasticities for Italy’s specialization industries are generally low, except for leather products and, to a lesser extent, textiles.

The last block of columns shows, for each of the four countries, the sectoral percentage contributions to the time-average (1994-2008) of the overall “export elasticity” η_{it} of the country under exam. Table 4 reveals that “Chemical and pharmaceutical products” as well as “Machinery and equipment” tend to yield relatively large contributions due to their relatively large share in total trade, while displaying below-the-average “sectoral elasticities”. Symmetrically, “Other transport equipment” tends to yield relatively large contributions due to above-the-average “sectoral elasticities”. These common features can probably be distinguished more clearly from Figure 2. The figures also reveal that the majority of the sectors are characterised by “sectoral elasticities” between 3 and 6, with the corresponding shares in total exports being below ten per cent. These sectors, having small elasticities and small shares, clearly have the smallest contributions to the overall “export elasticity”. The remaining 4 to 5 sectors are heavy contributors, representing from 48 per cent of the total for Italy, 66 per cent for Germany and Spain, and 73 per cent (for France).

Indeed, the differences in the overall “export elasticity” across the four countries are mostly due to the “Motor vehicles” sector. This sector represents a large share of German and Spanish exports (more than 21 per cent in both countries) and its average “sectoral elasticity” is relatively high. One potential concern is that the large size of this sector may be due to the fact that it aggregates a lot of products, which may introduce a bias in the estimated elasticity of substitution. However, as pointed out by BW, aggregation is likely to imply a downward bias in the estimated elasticity, the reason
being that a more aggregated sector includes goods that are likely to be less substitutable with each other, which lowers the estimated elasticity of substitution.

Another potential concern is that the estimations for the “Motor vehicles” sector may be biased because product classifications in trade data do not closely map market products, as perceived by the consumers. It is therefore useful to compare our results with Blonigen and Soderbery (2009), who apply the BW methodology to the U.S. automobile market and compare the results obtained with two very different definitions of varieties: the first is the usual Armington definition based on trade data at the 10-digit HS level; the second is a “market-based” definition of variety, which corresponds to a specific car model (e.g. Honda Civic, Toyota Corolla, etc.). Both definitions of varieties yield similar elasticities of substitution (11.4 for the former, 11.7 for the latter), which suggests that estimation is not biased by the definition of variety\(^{11}\) and confirms that the sector tends to be characterized by relatively high elasticities.

5.2 Geographical decomposition

To investigate the role played by the geographical composition of exports, we start with the contributions to the overall “export elasticity” \(\eta_i\) disaggregated by market, defined as a sector-destination pair, and collapse the sector dimension. Table 5 presents the results for the 16 main destination countries in our data\(^{12}\). In parallel with the sectoral analysis, the first four columns of the table report, for each of the four exporting countries, the “demand elasticity” in each of the destination countries (“demand elasticity by destination country”). These are computed as weighted averages of the underlying “demand elasticities” estimated by BGW. For any given destination country, they differ among the four euro area exporters only because of the product composition of exports.

Our results show that there is no strong correlation between “demand elasticities” by destination country” and their income per capita. For example, Romania, Hungary and Sweden show the highest elasticities, while the lowest ones are found for Mexico, the US, Austria, the United Kingdom and Portugal. These findings are in line with the conclusions of BGW: they compute the

\(^{11}\) Blonigen and Soderbery (2009) show that the definition of variety has instead a major impact on the entering and exiting of varieties. Specifically, market-based data show a higher degree of product variety churning, which in trade-based data is hidden by the Armington assumption.

\(^{12}\) Recall that Belgium is not included in the set of countries for which BGW elasticities are available.
median across products of the “demand elasticities” they estimate for each of the 73 countries in their database and find that these medians are not correlated with income per capita.

All countries except Germany show low elasticities for the US. This reflects the product composition of German exports to the US, with the sector “motor vehicles” accounting for a very large share (40 per cent) and displaying an above-the-average “demand elasticity”.

Looking at the shares on total exports in the middle block of columns, it emerges that differences in the geographical composition of exports across the four countries are much less significant than differences in their sectoral composition. There are some exceptions, mainly related to the fact that trade tends to be more intense with neighbouring countries\(^ {13} \) or to specific markets (e.g. the US for exports from Germany). Turning to what we have dubbed “asymmetric effects”, the first four rows are a warning for their potential. Note in particular (shares in parenthesis):

- France is a big market for Spanish exports (22 per cent) but Spain is a much less important market for French exports (10 per cent)
- Germany is a big market for Italian and Spanish exports (17 and 14 per cent, respectively) but Italy is a much less important market for German exports (8 per cent). Similarly for Spain (5 per cent).

The last four columns of Table 5 show the destination-country’s percentage contributions to the time-average (1994-2008) of the overall “export elasticity” \(\eta_i \) of the exporting country under exam. Large contributions tend to be driven by large shares, rather than by large “demand elasticities”, so that for each of the four countries the biggest contributions come from the remaining three. The fact that export shares are a good estimator of the contributions to the overall “export elasticity” is confirmed by the last row of the table, where the overall export share of the 16 countries being considered is almost identical to the overall contribution (except for Germany).

Exports to Italy from the other three countries tend to be the only case where high export shares are associated with relatively high “demand elasticities”. Turning to the “asymmetric effects”, an interesting question is how much they contribute to the differences in the overall “export elasticities”. The answer is that they matter quite a lot for Spain (11 per cent of its overall “export elasticity”, 0.8 over 7.4), but not for the other countries. For instance, Spanish exports to Italy contribute almost 16 per cent to \(\eta_{Spain} \) (1.2 in level terms), whereas Italian exports to Spain\(^ {13} \) As emphasised by the gravity models of trade.
contribute only 6 per cent to η_{Italy} (0.3 in levels). Since $\eta_{Spain}=7.4$ and $\eta_{Italy}=5.5$, it turns out that almost half of the difference is due to the “asymmetric effect”. The “asymmetric effect” is less relevant for the remaining countries:

- Italian exports to Germany contribute 18 per cent to η_{Italy} (1.0 in level terms), whereas German exports to Italy contribute around 11 per cent to $\eta_{Germany}$ (0.9 in levels).
- Italian exports to France contribute around 16 per cent to η_{Italy} (0.9 in level terms). Also French exports to Italy contribute around 16 per cent to η_{France} (1.0 in levels).
- German exports to France contribute almost 15 per cent to $\eta_{Germany}$ (1.1 in level terms), whereas French exports to Germany contribute almost 17 per cent to η_{France} (1.1 in levels).

6. Conclusions

Italy’s manufacturing sector shows a peculiar specialisation structure, compared to the other main euro area countries. This has been the object of a long debate, with several observers arguing that it is an important weakness factor, exposing Italian exporters to increasing competition from emerging countries. On the other hand, it is hard to reconcile this argument with evidence pointing to significant pricing power enjoyed by Italian firms, including those producing traditional goods. This paper contributes to the debate by implementing a novel methodology which enables us to assess whether the sectoral and geographical composition of Italian exports exposes them to markets with a more price-elastic demand, relatively to the other main euro area countries.

We start with the Armington (1969) idea that different countries export different varieties of a given product. We then draw on the contribution by Feenstra, who shows how to use trade data in order to estimate the elasticity of substitution among different varieties of the same product. Under certain assumptions, the estimated elasticity of substitution corresponds to the price elasticity of demand facing all the exporters of a given product. We borrow the elasticities of substitution among varieties estimated by Broda, Weinstein and Greenfield (2006) for each market, defined as a combination of 73 countries and 171 products. A convenient weighted average of these “demand elasticities” yields a measure of “export elasticity” for the composite bundle “exports of goods” of the four euro area economies under exam (Italy, France, Germany, Spain).
We find that Italy’s “export elasticity” tends to be on average lower than export elasticity of the other three countries. This result mainly reflects differences in the sectoral composition of exports. One of Italy’s main specialisation sectors (machinery and equipment) has a relatively low elasticity of substitution. Among traditional goods, the elasticities are higher for textiles and leather products, but very low for wearing apparel. Importantly, the highest elasticities are found in the motor vehicles sector, which accounts for a smaller share of Italian exports, compared to over 20 per cent for German or Spanish exports.

We are aware that elasticities of substitution can be quite sensitive to the estimation method, as pointed out by Mohler (2009). As a robustness check, we re-estimate 290 out of the 11300 elasticities estimated by BGW, using a different data source and alternative estimation methods. We select the “demand elasticities” most relevant to our analysis, that is the import elasticities in the four highly integrated euro area countries under exam. While confirming Mohler’s findings, the weighting procedure we implement in the computation of the “export elasticities” clearly mutes individual differences. We conclude that our main results are quite robust to alternative estimation methods.

Our findings are subject to the caveats mentioned in the Introduction. In particular, the Armington (1969) definition of variety could be quite restrictive, especially in some sectors. Future work could follow the direction taken by Blonigen and Soderbery (2009), who estimate the elasticities of substitution among varieties using a more appropriate and “market-based” definition of variety for the motor vehicles sector. This sector definitely deserves a more thorough investigation, given its large share in manufacturing output and exports.
References

Appendix

The appendix provides a short description of the estimation methodology proposed by Feenstra and applied, with modifications, by BW and BGW.

Feenstra’s methodology - It is assumed that the importing country’s utility function can be described by the following non-symmetric CES function:

\[
M_{gt} = \left(\sum_{c \in C} d_{gct}^{1/\sigma_g} (m_{gct})^{\sigma_g - 1/\sigma_g} \right)^{\sigma_g/(\sigma_g - 1)}
\]

where \(M_{gt} \) is the utility from consuming good (product) \(g \) at time \(t \), \(d_{gct} \) is a taste or quality parameter for product \(g \) imported from country \(c \) (\(c \) indexes origin countries, i.e. varieties), \(m_{gct} \) is the quantity of product \(g \) imported from country \(c \) and \(\sigma_g \) is the elasticity of substitution among varieties of good \(g \) (assumed to be larger than one). The demand for imports of variety \(c \) of good \(g \) can be expressed as a function of its price in the following way:

\[
\Delta \ln s_{gct} = \varphi_g - (\sigma_g - 1)\Delta \ln p_{gct} + \epsilon_{gct}
\]

where \(s_{gct} \) is the value share of imports of good \(g \) from country \(c \) on total imports by the importing country and \(p_{gct} \) is the price of good \(g \) imported from country \(c \). Supply is determined by the following equation:

\[
\Delta \ln p_{gct} = \psi_g + \frac{\alpha_g}{1 + \sigma_g} \Delta \ln s_{gct} + \delta_{gct}
\]

in which the supply elasticity is assumed to be constant across all supplying countries. It is also maintained that the error terms in the demand and supply equations are independent. For any fixed good \(g \), take a given supplying country \(k \) as the reference country and differentiate (A2) and (A3) relative to country \(k \), then combine the two equations to obtain the following regression equation:

\[
\left(\Delta^k \ln p_{gct} \right)^2 = \theta_1 \left(\Delta^k \ln s_{gct} \right)^2 + \theta_2 \left(\Delta^k \ln p_{gct} \Delta^k \ln s_{gct} \right) + u_{gct},
\]

where the notation \(\Delta^k p_{gct} \) indicates the difference between \(\Delta p_{gct} \) in country \(k \) and \(\Delta p_{gct} \) in country \(j \neq k \). Note that (A4) defines a panel regression for each good \(g \) and each importing country \(j \neq k \) (for the sake of notation we have omitted to index the two parameters \(\theta_1 \) and \(\theta_2 \)).

Using the estimated values for \(\hat{\theta}_1 \) and \(\hat{\theta}_2 \) one may then obtain \(\hat{\sigma}_g \), i.e. the estimated elasticity of substitution among varieties of good \(g \) (in the given importing country), according to the following equation:

\[
\hat{\sigma}_g = 1 + \left(2\hat{\rho} - 1 \right) \frac{1}{\hat{\theta}_2}
\]

where \(\hat{\rho} \) is given by:

\[
\hat{\rho} = \frac{1}{2} + \left(\frac{1}{4} - \frac{1}{4 + (\hat{\theta}_2 / \theta_2)} \right)^{1/2}
\]

if \(\hat{\theta}_2 > 0 \).
Notice that $\tilde{\sigma}_g$ is ultimately a function of $\hat{\theta}_1$ and $\hat{\theta}_2$ alone. Feenstra shows that the estimates $\hat{\theta}_1$ and $\hat{\theta}_2$ are robust to the simple form of measurement error in the prices, with equal variance across supplying countries, provided that a constant term is added to equation (A4). He further shows that consistent estimation of θ_1 and θ_2 can be obtained by taking time-averages in (A4), that is by running the between regression\(^{14}\) associated with (A4). In fact, one needs to run Weighted Least Squares on the between regression, with weights equal to the total number of years in which each variety is imported. This estimator corresponds to the Generalized Methods of Moments (GMM) estimator. Feenstra also shows that a consistent and efficient estimator can be obtained by taking the residuals from the consistent estimation and using their standard deviation to weigh the data in the IV estimation.

The references we have made in the text to Feenstra’s methodology for estimating elasticities point to the consistent and efficient estimation, augmented for the constant term as detailed above.

The methodology of BW and BGW – BW and BGW also have equation (A4) as a starting point, but depart from Feenstra in various ways. Firstly, they allow for a more general treatment of measurement error in the prices, concluding that the constant term Feenstra suggests adding to equation (A4) should be replaced by the following term:

\[
\theta_0 \frac{1}{T_{gc}} \sum_t \left(\frac{1}{q_{gct}} + \frac{1}{q_{gct-1}} \right),
\]

where q_{gct} is the quantity of good g imported from country c in year t, T_{gc} is the total number of years in which variety c is imported (in positive amounts) and θ_0 is the extra parameter to be estimated. Notice that the regressor is indeed a constant term if q_{gct} is constant through time. Secondly, the authors address the issue of heteroskedasticity in the data and propose to weigh them by

\[
T^{3/2}\left(\frac{1}{q_{gct}} + \frac{1}{q_{gct-1}} \right)^{-1/2}
\]

The intuition is that prices are measured more precisely when larger quantities are traded.

In conclusion, the authors estimate (for each importing country and each good g) the between regression associated with the following equation

\[
(\Delta \ln P_{gct})^2 = \theta_0 \frac{1}{T_{gc}} \sum_t \left(\frac{1}{q_{gct}} + \frac{1}{q_{gct-1}} \right) + \theta_1 (\Delta \ln s_{gct})^2 + \theta_2 \left(\Delta \ln P_{gct} \Delta \ln s_{gct} \right) + \nu_{gct},
\]

after weighting all endogenous and exogenous variables by the term in equation (A9).

One issue Feenstra was not concerned with is that equation (A10), via equation (A5), may yield inadmissible estimates for the elasticity of substitution, i.e. values lower than unity\(^{15}\). When this happens, the authors resort to the GMM interpretation suggested by Feenstra: by implementing a

\(^{14}\) The intuition is straightforward: the error term ϵ_{gct} is proportional to the product of the two structural errors ϵ_{gct} and δ_{gct}, which are assumed to be independent. Switching to time averages, the error term vanishes asymptotically.

\(^{15}\) Feenstra only considered a limited number of goods imported by the US and, apparently, never run into this anomaly.
grid search procedure on the GMM objective function they are able to ensure that the estimated
elasticity of substitution is larger than unity (see Broda and Weinstein, 2006, for the details).

Product and prices definition – We conclude with a few clarifications on how products (goods) and
their prices are defined. Starting with the Eurostat trade data where a product is defined by an 8-
digit Combined Nomenclature code, the method we have dubbed as Feenstra_HS3 collapses all
products sharing the first three digits into a single “product”: we have referred to this practice as
defining products at the 3-digit level. In BGW a product is identified by a 6-digit HS code, but it is
assumed that all products falling into the same 3-digit HS code share the same elasticity of
substitution among varieties. This reduces the number of regressions to be run while preserving the
variability across goods. The same product definition is used in what we have dubbed the
BGW_9405 estimates and the Feenstra_HS6 estimates.
As for product prices appearing in equation (A4), they are simply defined as unit values, the ratio of
export values (quoted in euros in the Eurostat dataset) and quantities (quoted in tons). After 2005,
European Union members have started collecting data on quantities allowing for “supplementary
units” in the place of weight (for example: length for cables). This made impossible to define prices
on a homogeneous bases and that is the reason why in estimating price elasticities of import demand
our sample period ends in 2005.
Tables and Figures

Average “export elasticity” for the main four euro area countries

1.A : BGW elasticities

![Graph 1.A](image1.png)

1.B : BGW_9405 elasticities

![Graph 1.B](image2.png)

1.C : Feenstra_HS6 elasticities

![Graph 1.C](image3.png)

1.D : Feenstra_HS3 elasticities

![Graph 1.D](image4.png)

Note: the “export elasticities” are weighted averages of “demand elasticities” in the destination markets, with weights equal to each market’s share on exports (as indicated in equation (1)). When the destination market is one of the four euro area countries, each panel uses the “demand elasticities” estimated according to the method indicated in its title and documented in Table 1 (and the BGW elasticities for the remaining countries). All elasticities are trimmed to 30. For further details on the estimation methods, see the Appendix.
Figure 2

Contribution of the “sectoral elasticities” and the export share to the overall export elasticity

2.A: FRANCE

2.B: ITALY

22
Note: the graphs report the “sectoral elasticities” and the export shares for the 17 sectors in each of the four countries, as listed in Table 4. The size of each bubble is proportional to the sector’s contribution to the overall export elasticity in a given country, so that comparisons between graphs are not warranted.

Table 1

Estimation methods for the “demand elasticities”

<table>
<thead>
<tr>
<th>Estimation identifier</th>
<th>Estimation method</th>
<th>Definition of variety</th>
<th>Sample period</th>
<th>Trade data source</th>
<th>Source of the estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feenstra_HS3</td>
<td>Feenstra (1994)</td>
<td>HS3</td>
<td>1994-2005</td>
<td>Eurostat</td>
<td>our computations</td>
</tr>
</tbody>
</table>

Note: “BGW” refers to the elasticities estimated by BGW (2006) on the time span 1994-2003; “BGW_9405” refers to the elasticities we estimated using the BGW methodology on the time span 1994-2005; “Feenstra_HS6” refers to the elasticities we estimated using the Feenstra methodology and varieties defined at the 6-digit level; “Feenstra_HS3” refers to the elasticities we estimated using the Feenstra methodology and varieties defined at the 3-digit level.

Table 2

Percentage of total exports in our dataset over total exports of goods in official statistics

(average 1994-2008)

<table>
<thead>
<tr>
<th></th>
<th>Italy</th>
<th>France</th>
<th>Germany</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>85.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>81.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>83.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td>87.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Correlation matrix of export shares by market (product-destination pair) in 2008

<table>
<thead>
<tr>
<th></th>
<th>Italy</th>
<th>France</th>
<th>Germany</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0.748</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.557</td>
<td>0.520</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>0.651</td>
<td>0.715</td>
<td>0.474</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: the table reports correlation coefficients among the four countries’ export shares in 2008. Shares are defined over destination-product pairs, products being identified at the 3-digit HS level.
Table 4

Sectoral decomposition for the time-average (1994-2008) of the overall “export elasticities” $\eta_{i,t}$ by exporting country

<table>
<thead>
<tr>
<th></th>
<th>“Sectoral elasticity” (A)</th>
<th>Percentage share on total exports (B)</th>
<th>Percentage contribution to the overall “export elasticity” η_i ($A \cdot B / \eta_i$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FRA</td>
<td>GER</td>
<td>ITA</td>
</tr>
<tr>
<td>Agricultural, food, beverages and tobacco products</td>
<td>5.2</td>
<td>5.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Minerals and mineral products</td>
<td>5.3</td>
<td>7.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Textiles</td>
<td>5.7</td>
<td>6.1</td>
<td>5.6</td>
</tr>
<tr>
<td>Wearing apparel</td>
<td>3.8</td>
<td>3.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Leather and related products</td>
<td>4.4</td>
<td>5.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Wood and of products of wood (except furniture)</td>
<td>3.9</td>
<td>4.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Paper and paper products, printing</td>
<td>3.7</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Chemical and pharmaceutical products</td>
<td>4.1</td>
<td>4.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Rubber and plastic products</td>
<td>4.8</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Non-metallic mineral products</td>
<td>3.5</td>
<td>4.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Metals and metal products</td>
<td>4.7</td>
<td>5.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Computer, electronic and optical products</td>
<td>4.2</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Electrical equipment</td>
<td>4.2</td>
<td>4.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Machinery and equipment</td>
<td>4.0</td>
<td>4.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Motor vehicles, trailers and semi-trailers</td>
<td>15.1</td>
<td>16.2</td>
<td>12.5</td>
</tr>
<tr>
<td>Other transport equipment</td>
<td>10.5</td>
<td>18.3</td>
<td>10.3</td>
</tr>
<tr>
<td>Furniture and other manufacturing</td>
<td>5.4</td>
<td>5.3</td>
<td>5.1</td>
</tr>
<tr>
<td>TOTAL1</td>
<td>6.5</td>
<td>7.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Note: see Section 5 for a precise definition of the variables reported in the table. Results based on the underlying BGW “demand elasticities”. In each column, shadowed cells highlight the highest values.

(1) Overall weighted “export elasticity” for the first four columns.
Table 5

Destination-country decomposition for the time-average (1994-2008) of the overall “export elasticities” \(\eta_{it} \), by exporting country

<table>
<thead>
<tr>
<th></th>
<th>“Demand elasticity” by destination country (A)</th>
<th>Percentage share on total exports (B)</th>
<th>Percentage contribution to the overall “export elasticity” (\eta_{i}) (A \cdot B / \eta_{i})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FRA</td>
<td>GER</td>
<td>ITA</td>
</tr>
<tr>
<td>France</td>
<td>---</td>
<td>9.4</td>
<td>6.1</td>
</tr>
<tr>
<td>Germany</td>
<td>6.0</td>
<td>---</td>
<td>5.8</td>
</tr>
<tr>
<td>Italy</td>
<td>9.7</td>
<td>10.8</td>
<td>---</td>
</tr>
<tr>
<td>Spain</td>
<td>6.3</td>
<td>5.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Netherlands</td>
<td>6.2</td>
<td>4.9</td>
<td>6.8</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>5.1</td>
<td>6.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Portugal</td>
<td>6.4</td>
<td>6.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Sweden</td>
<td>8.1</td>
<td>7.1</td>
<td>6.9</td>
</tr>
<tr>
<td>Austria</td>
<td>6.8</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>9.8</td>
<td>6.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Turkey</td>
<td>6.4</td>
<td>6.9</td>
<td>6.4</td>
</tr>
<tr>
<td>Poland</td>
<td>6.2</td>
<td>6.4</td>
<td>6.5</td>
</tr>
<tr>
<td>Hungary</td>
<td>9.9</td>
<td>9.3</td>
<td>8.6</td>
</tr>
<tr>
<td>Romania</td>
<td>14.1</td>
<td>12.9</td>
<td>14.1</td>
</tr>
<tr>
<td>USA</td>
<td>4.0</td>
<td>11.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Mexico</td>
<td>3.7</td>
<td>3.6</td>
<td>4.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.5</td>
<td>7.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Note: See Section 5 for a precise definition of the variables reported in the table. Results based on the underlying BGW “demand elasticities”. In each column, shadowed cells highlight the highest values. Recall that Belgium is not included in the set of countries for which BGW elasticities are available.

(1) Overall weighted “export elasticity” for the first four columns.