"GEEM: A policy model for assessing climate-energy reforms for Italy"

Barbara Annicchiarico, Susan Battles, Fabio Di Dio, Pierfrancesco Molina, Pietro Zoppoli

Paper presentation by: Pierfrancesco Molina

Rome, February 5, 2016

GEEM: A Comprehensive C&E Policy Simulation Tool

- The *General Equilibrium Environmental Model* (GEEM) is a large-scale DGE model aiming to serve as a policy simulation tool
- It focuses on simulating the macroeconomic impact of the introduction of climate-energy policies oriented to reduce GHG emissions
- It can be also used to evaluate the **interaction** between climate-energy policies and other structural policies as well as exogenous supply shocks

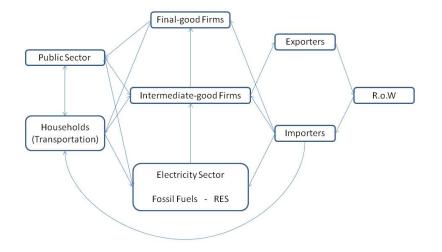
- 2030 EU Climate Change and Energy policy framework
- Paris COP21

A growing effort toward a low carbon economy

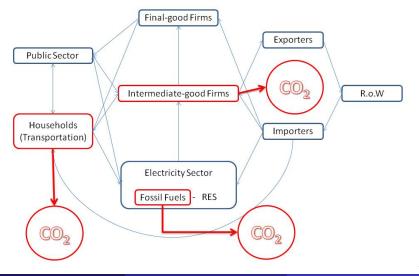
Endowing public authorities with a **quantitative instrument** to assess the macroeconomic impact of environmental policies

- Three main actions:
 - Lowering the amount of emission permits
 - Increasing the share of RES in electricity generation
 - Sostering efficiency in production

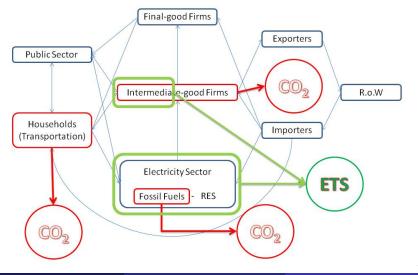
- The strength of GEEM:
 - Emission reduction policies along with:
 - Fiscal policies
 - Liberalization measures
 - Economic efficiency policies
 - Energy-price shocks
 - Performance analysis of structural policies in presence of environmental constraints


Modeling Innovations

• GEEM presents three main modeling innovations:


- Simultaneous presence of:
 - Environmental constraints and externalities
 - Distortionary taxation
 - Market imperfections
- An electricity sector accounting for generation from:
 - Fossil fuel sources
 - Renewable sources (RES)

3 A transportation sector \Rightarrow fuel consumption on the household side


The Structure of the Model

The Structure of the Model

The Structure of the Model

Emissions Trading System

- The ETS is a Cap&Trade scheme structured as a financial market:
 - Primary market \Rightarrow Government sells a fixed amount of emission permits (auction)
 - Secondary market \Rightarrow Firms subject to the ETS engage in sales and purchases of the permits
- The ETS involves:
 - The electricity sector
 - Energy intensive industries, e. g.:
 - Cement
 - Paper
 - Ceramic
 - Refinery
 - Still

The Core of the Model (1/5)

• Production of intermediate-goods:

$$Y_t = A_t d(M_t) \left\{ \rho^{1-\sigma} [f(K_t, L_t)]^{\sigma} + (1-\rho)^{1-\sigma} (EL_t)^{\sigma} \right\}^{\frac{1}{\sigma}}$$

• Production of electricity:

$$\mathsf{EL}_t = \left\{ \rho_{\mathsf{FL}}^{1-\sigma_{\mathsf{FL}}} (\mathsf{EL}_{\mathsf{FOS},t})^{\sigma_{\mathsf{FL}}} + (1-\rho_{\mathsf{FL}})^{1-\sigma_{\mathsf{FL}}} (\mathsf{EL}_{\mathsf{RES},t})^{\sigma_{\mathsf{FL}}} \right\}^{\frac{1}{\sigma_{\mathsf{FL}}}}$$

• Monopolistic competition in the electricity market:

$$P_{EL,t} = \underbrace{\mu}_{\text{markup}} \times MC_t$$

ч

The Core of the Model (2/5)

- Three sources of emissions (CO₂) generation:
 - **(**) Good production: $Z_{Y,t} = (1 U_t)\varphi_Y(Y_t)^{\mu_Y}$
 - 2 Electricity generation: $Z_{EL,t} = (1 U_{EL,t})\varphi_{EL}(EL_{FOS,t})^{\mu_{EL}}$
 - **3** Transportation: $Z_{T,t} = \varphi_T(F_t)^{\mu_T}$
- Emissions from ETS sectors:

$$Z_t^{ETS} = s_{ETS} Z_{Y,t} + Z_{EL,t}$$

• Total emissions:

$$Z_t^{TOT} = Z_t^{ETS} + (1 - s_{ETS})Z_{Y,t} + Z_{T,t}$$

Households maximize utility subject to the budget constraint:

 $C_t + I_t + I_t^{RES} + \dots = (1 - \tau_L) W_t L_t + (1 - \tau_K) r_{K,t} K_t + (1 - \tau_K^{RES}) r_{K,t}^{RES} K_t^{RES} + \dots$

• Households' consumption includes goods and fuel for transportation:

$$C_t = g(C_{Y,t}, C_{F,t})$$

• The demand of fuel is negatively related to the price (and excise taxes):

$$C_{F,t} = h(P_{F,t}(1+\tau_F))$$

• The long-run resource constraint of the economy is:

$$Y = C + I + G + EX - IM + C_U$$

- Import (IM) includes:
 - Foreign goods
 - Fossil fuels used for electricity generation (coal, gas and oil) and fuel used for transportation (refined oil and biofuel)
 - Investment goods for the RES sector I^{RES} (i.e. solar cells, windmill blades)
- The emission abatement cost C_U accounts for the resources used for emission abatement efforts

• The long-run resource constraint of the economy is:

$$Y = C + I + G + EX - IM + C_U$$

- Import (IM) includes:
 - Foreign goods
 - Fossil fuels used for electricity generation (coal, gas and oil) and fuel used for transportation (refined oil and biofuel)
 - Investment goods for the RES sector I^{RES} (i.e. solar cells, windmill blades)
- The emission abatement cost C_U accounts for the resources used for emission abatement efforts

• The budget constraint of the government is:

$$B_t = R_{t-1}B_{t-1} + G_t - TAX_t - p_Z Z_t^{ETS}$$

- Taxation (*TAX*_t) includes:
 - **1** Labor taxes: $\tau_L W_t L_t$
 - 2 Taxes/Subsidies on capital: $\tau_K r_{K,t} K_t + \tau_K^{RES} r_{K,t}^{RES} K_t^{RES}$
 - **③** Excise taxes on consumption of fuel for transportation: $\tau_F C_{F,t}$

• The budget constraint of the government is:

$$B_t = R_{t-1}B_{t-1} + G_t - TAX_t - \left(p_Z Z_t^{ETS}\right)$$

- Taxation (*TAX*_t) includes:
 - **1** Labor taxes: $\tau_L W_t L_t$
 - 2 Taxes/Subsidies on capital: $\tau_K r_{K,t} K_t + \tau_K^{RES} r_{K,t}^{RES} K_t^{RES}$
 - **③** Excise taxes on consumption of fuel for transportation: $\tau_F C_{F,t}$

• GEEM is built to simulate several different scenarios, e. g.:

Emission reduction policies	1 2	Emission reduction in ETS sectors 1 + carbon market revenues ear- marked for reducing labor taxes
Fiscal policies	3 4	Tax shift from labor to fuel for trans- portation Tax shift from RES to fuel for trans- portation
	5	Public spending increase
Liberalization policies	6	Decrease in electricity sector price markup
Energy Price Shock	7	Shock on oil and gas price
		< ロ > < 合 > < き > < き > き うの
General Equilibrium Modeling	C	GEEM February 5, 2016 16 / 2

Emission Reduction Policies (1/2)

•
$$Z_t^{ETS} = s_{ETS}Z_{Y,t} + Z_{EL,t}$$

• $\Delta Z^{ETS} = -20\%$

Table 1: Scenario 1 - ETS emissions reduction

	Years						
	5	10	15	20	30		
GDP	-0.17	-0.15	-0.19	-0.08	-0.01		
Consumption	-0.14	-0.16	-0.17	-0.14	-0.13		
Investments	-0.25	-0.25	-0.19	-0.15	-0.13		
RES Investments	0.28	0.24	0.25	0.21	0.15		
Labor	-0.19	-0.14	-0.21	-0.05	0.00		
Total Emissions	-3.35	-6.93	-10.51	-10.77	-10.77		
Electricity - Total	-0.35	-0.42	-0.50	-0.34	-0.24		
Electricity - Fossil	-0.75	-0.84	-0.93	-0.67	-0.49		
Electricity - Res	0.40	0.35	0.30	0.27	0.21		

・ロト ・聞き ・モン・・モン

э

Emission Reduction Policies (2/2)

•
$$Z^{ETS} \downarrow + \tau_L \downarrow$$

• $\Delta(p_Z Z^{ETS}) = -\Delta(\tau_L WL) = 0.4\%$ of GDP

Table 2: Scenario 2 - ETS emissions + Reducing labor taxes

			Years		
	5	10	15	20	30
GDP	0.07	0.23	0.23	0.37	0.45
Consumption	0.10	0.12	0.12	0.16	0.17
Investments	-0.14	-0.10	-0.01	0.05	0.10
RES Investments	0.31	0.30	0.34	0.32	0.29
Labor	0.17	0.43	0.42	0.58	0.64
Total Emissions	-3.28	-6.85	-10.43	-10.69	-10.68
Electricity - Total	-0.27	-0.26	-0.29	-0.11	-0.01
Electricity - Fossil	-0.60	-0.59	-0.62	-0.35	-0.18
Electricity - Res	0.34	0.33	0.32	0.32	0.31

< □ > < □ > < □ > < □ > < □ > .

• Total consumption = consumption of Ricardian + consumption of Non-Ricardian households

	Years				
	5	10	15	20	30
Consumption	0.10	0.12	0.12	0.16	0.17
Consumption - Ricardian	0.04	0.05	0.06	0.06	0.09
Consumption - Non Ricardian	1.63	1.67	1.55	2.31	2.16

Table 3: Scenario 2 - Consumption

Fiscal Policies and Taxation (1/3)

•
$$\Delta Z^{TOT} = 0$$
, $\tau_F \uparrow + \tau_L \downarrow$

•
$$\Delta(\tau_F C_F) = -\Delta(\tau_L WL) = 1\%$$
 of GDP

Table 4: Scenario 3 - Tax shift from labor to fuel (transportation)

	Years					
	5	10	15	20	30	
GDP	0.48	0.79	0.86	0.84	0.85	
Consumption	0.55	0.33	0.34	0.45	0.45	
Investments	0.24	0.33	0.39	0.43	0.49	
RES Investments	0.06	0.12	0.17	0.21	0.29	
Labor	0.74	1.19	1.24	1.16	1.10	
Total Emissions	0.00	0.00	0.00	0.00	0.00	
Electricity - Total	0.18	0.33	0.41	0.45	0.47	
Electricity - Fossil	0.34	0.53	0.62	0.64	0.62	
Electricity - Res	-0.13	-0.04	0.03	0.10	0.20	

Fiscal Policies and Taxation (2/3)

•
$$\Delta Z^{TOT} = 0$$
, $\tau_F \uparrow + \tau_K^{RES} \downarrow$

• $\Delta(\tau_F C_F) = -\Delta(\tau_K r_K K)^{RES} = 0.1\%$ of GDP

Table 5: Scenario 4 - Tax shift from RES taxes to fuel (transportation)

			Years		
	5	10	15	20	30
GDP	0.19	0.17	0.14	0.12	0.09
Consumption	0.09	0.07	0.06	0.07	0.05
Investments	0.30	0.25	0.21	0.18	0.14
RES Investments	8.22	8.04	7.91	7.81	7.68
Labor	-0.03	-0.02	-0.04	-0.06	-0.07
Total Emissions	0.00	0.00	0.00	0.00	0.00
Electricity - Total	0.80	1.36	1.72	1.98	2.34
Electricity - Fossil	-3.20	-2.26	-1.62	-1.14	-0.49
Electricity - Res	8.90	8.59	8.34	8.15	7.88

《曰》 《聞》 《臣》 《臣》 三臣。

Fiscal Policies and Taxation (3/3)

• $\Delta Z^{TOT} = 0$

• $\Delta G = 1\%$ of GDP

Table 6: Scenario 5 - Public spending increase

			Years		
	5	10	15	20	30
GDP	0.51	0.62	0.68	0.72	0.78
Consumption	-0.59	-0.72	-0.74	-0.74	-0.74
Investments	0.64	0.65	0.66	0.67	0.68
RES Investments	7.04	6.42	5.89	5.43	4.66
Labor	0.39	0.57	0.66	0.72	0.82
Total Emissions	0.00	0.00	0.00	0.00	0.00
Electricity - Total	0.96	1.52	1.82	2.00	2.15
Electricity - Fossil	-2.90	-1.71	-0.93	-0.38	0.36
Electricity - Res	8.74	7.94	7.22	6.60	5.56

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣

Liberalization Measures

• $\Delta Z^{TOT} = 0$

•
$$P_{EL,t} = \mu M C_t \rightarrow \Delta \mu = -10\%$$

Table 7: Scenario 6 - Markup reduction in the electricity sector

			Years		
	5	10	15	20	30
GDP	0.15	0.15	0.14	0.14	0.13
Consumption	0.07	0.09	0.08	0.08	0.07
Investments	0.22	0.19	0.17	0.15	0.12
RES Investments	5.99	5.76	5.57	5.43	5.23
Labor	-0.02	-0.01	-0.01	-0.01	-0.01
Total Emissions	0.00	0.00	0.00	0.00	0.00
Electricity - Total	1.03	1.88	2.52	3.01	3.69
Electricity - Fossil	-1.97	-0.50	0.61	1.48	2.71
Electricity - Res	6.95	6.52	6.18	5.91	5.52

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Energy Price Shock

• $\Delta Z^{TOT} = 0$

• $\Delta P_{OIL,t} = \Delta P_{GAS,t} = -20\%$

Table 8: Scenario 7 - Shock on Oil and Gas Price

			Years		
	5	10	15	20	30
GDP	0.20	0.21	0.21	0.21	0.20
Consumption	0.17	0.19	0.19	0.19	0.18
Investments	0.34	0.30	0.27	0.25	0.22
RES Investments	6.01	5.28	4.70	4.23	3.56
Labor	-0.05	-0.03	-0.03	-0.03	-0.03
Total Emissions	0.00	0.00	0.00	0.00	0.00
Electricity - Total	1.36	2.57	3.58	4.43	5.74
Electricity - Fossil	-2.04	0.23	2.16	3.83	6.45
Electricity - Res	8.12	7.12	6.27	5.54	4.45

<ロト

- Extensions:
 - **1** Directed Technical Change and endogenous efficiency improvements
 - **2** Open economy \Rightarrow Multi-country framework
- Environmental CGE \Rightarrow MEF-MATTM joint research project