Firms’ Finance, Cyclical Sensitivity, and the Role of Monetary Policy

Anastasia S. Zervou

Texas A&M University

Italian Treasury,
November 25, 2014
Limited Participation and Segmented Markets

Framework

- Emphasize different to sticky price friction.
- Monetary Policy operates through financial markets.
- Connectivity to financial markets \Rightarrow connectivity to monetary policy.
- Not all entities similarly connected to financial markets \Rightarrow not all entities similarly connected to monetary policy.
Limited Participation and Segmented Markets

Framework

- Emphasize different to sticky price friction.
- Monetary Policy operates through financial markets.
- Connectivity to financial markets \Rightarrow connectivity to monetary policy.
- Not all entities similarly connected to financial markets \Rightarrow not all entities similarly connected to monetary policy.
Limited Participation and Segmented Markets

Framework

- Emphasize different to sticky price friction.
- Monetary Policy operates through financial markets.
- Connectivity to financial markets \Rightarrow connectivity to monetary policy.
- Not all entities similarly connected to financial markets \Rightarrow not all entities similarly connected to monetary policy.
Limited Participation and Segmented Markets

Framework

- Emphasize different to sticky price friction.
- Monetary Policy operates through financial markets.
- Connectivity to financial markets \Rightarrow connectivity to monetary policy.
- Not all entities similarly connected to financial markets \Rightarrow not all entities similarly connected to monetary policy.
Limited Participation Models

- Part of the economy, usually firms, connected to financial markets \Rightarrow firms directly affected by monetary policy.
- Working capital idea: firms need to borrow in order to operate.
- Firms pay interest.
- Monetary policy affects the external finance premium.
- Monetary policy has real effects that matter.
Limited Participation Models

- Part of the economy, usually firms, connected to financial markets ⇒ firms directly affected by monetary policy.
- Working capital idea: firms need to borrow in order to operate.
- Firms pay interest.
- Monetary policy affects the external finance premium.
- Monetary policy has real effects that matter.
Limited Participation Models

- Part of the economy, usually firms, connected to financial markets ⇒ firms directly affected by monetary policy.
- Working capital idea: firms need to borrow in order to operate.
- Firms pay interest.
 - Monetary policy affects the external finance premium.
 - Monetary policy has real effects that matter.
Limited Participation Models

- Part of the economy, usually firms, connected to financial markets ⇒ firms directly affected by monetary policy.
- Working capital idea: firms need to borrow in order to operate.
- Firms pay interest.
- Monetary policy affects the external finance premium.
- Monetary policy has real effects that matter.
Limited Participation Models

- Part of the economy, usually firms, connected to financial markets ⇒ firms directly affected by monetary policy.
- Working capital idea: firms need to borrow in order to operate.
- Firms pay interest.
- Monetary policy affects the external finance premium.
- Monetary policy has real effects that matter.
Limited Participation Models

- Monetary expansion increases cash available to firms.
- Firms buy more labor, expand production and increase real wage.
- These are real effects: agents are better off.
- Also, there is liquidity effect: Monetary policy expansion increases supply of loanable funds, and thus decreases interest rate (price of loanable funds).
- Monetary policy has real effects because of financial markets’ frictions.
Limited Participation Models

- Monetary expansion increases cash available to firms.
- Firms buy more labor, expand production and increase real wage.
- These are real effects: agents are better off.
- Also, there is liquidity effect: Monetary policy expansion increases supply of loanable funds, and thus decreases interest rate (price of loanable funds).
- Monetary policy has real effects because of financial markets’ frictions.
Limited Participation Models

- Monetary expansion increases cash available to firms.
- Firms buy more labor, expand production and increase real wage.
- These are real effects: agents are better off.
- Also, there is liquidity effect: Monetary policy expansion increases supply of loanable funds, and thus decreases interest rate (price of loanable funds).
- Monetary policy has real effects because of financial markets’ frictions.
Limited Participation Models

- Monetary expansion increases cash available to firms.
- Firms buy more labor, expand production and increase real wage.
- These are real effects: agents are better off.
- Also, there is liquidity effect: Monetary policy expansion increases supply of loanable funds, and thus decreases interest rate (price of loanable funds).
- Monetary policy has real effects because of financial markets’ frictions.
Limited Participation Models

- Monetary expansion increases cash available to firms.
- Firms buy more labor, expand production and increase real wage.
- These are real effects: agents are better off.
- Also, there is liquidity effect: Monetary policy expansion increases supply of loanable funds, and thus decreases interest rate (price of loanable funds).
- Monetary policy has real effects because of financial markets’ frictions.
This paper: Questions

- Firms’ financial structure, productivity shocks and the role of monetary policy.
- How productivity shocks affect firms with different financial structure?
- How monetary policy shocks transmit across firms with different financial structure?
- How optimal monetary policy reacts to productivity shocks?
This paper: Questions

- Firms’ financial structure, productivity shocks and the role of monetary policy.
- How productivity shocks affect firms with different financial structure?
- How monetary policy shocks transmit across firms with different financial structure?
- How optimal monetary policy reacts to productivity shocks?
This paper: Questions

- Firms’ financial structure, productivity shocks and the role of monetary policy.
- How productivity shocks affect firms with different financial structure?
- How monetary policy shocks transmit across firms with different financial structure?
- How optimal monetary policy reacts to productivity shocks?
This paper: Questions

- Firms’ financial structure, productivity shocks and the role of monetary policy.
- How productivity shocks affect firms with different financial structure?
- How monetary policy shocks transmit across firms with different financial structure?
- How optimal monetary policy reacts to productivity shocks?
Motivation

- Recent experience suggests countercyclical monetary policy’s reaction.
- Productivity shocks might affect differently firms that participate in the financial markets and firms that do not.
- Also, monetary policy affects differently firms that participate in the financial markets and firms that do not.
- Optimal monetary policy with new consideration.
Motivation

- Recent experience suggests countercyclical monetary policy's reaction.
- Productivity shocks might affect differently firms that participate in the financial markets and firms that do not.
- Also, monetary policy affects differently firms that participate in the financial markets and firms that do not.
- Optimal monetary policy with new consideration.
Motivation

- Recent experience suggests countercyclical monetary policy’s reaction.
- Productivity shocks might affect differently firms that participate in the financial markets and firms that do not.
- Also, monetary policy affects differently firms that participate in the financial markets and firms that do not.
- Optimal monetary policy with new consideration.
Motivation

- Recent experience suggests countercyclical monetary policy’s reaction.
- Productivity shocks might affect differently firms that participate in the financial markets and firms that do not.
- Also, monetary policy affects differently firms that participate in the financial markets and firms that do not.
- Optimal monetary policy with new consideration.
Empirical Evidence: Large firms: Gertler and Gilchrist (QJE, 1994)
Empirical Evidence: Small firms: Gertler and Gilchrist (QJE, 1994)

Sales Small Firms

Inv Small Firms
Empirical Evidence: Differential: Gertler and Gilchrist (QJE, 1994)

![Graphs showing sales and inventory differences](image-url)
This Paper

- uses a CIA model,
- allows for heterogeneity across industries concerning the way they finance production,
This Paper

- uses a CIA model,
- allows for heterogeneity across industries concerning the way they finance production,
This Paper

- uses a CIA model,
- allows for heterogeneity across industries concerning the way they finance production,

in order to:
- explore the effects of productivity shocks,
- examine the effects of monetary policy shocks,
- study the role of optimal monetary policy.
This Paper

- uses a CIA model,
- allows for heterogeneity across industries concerning the way they finance production,

in order to:
- explore the effects of productivity shocks,
- examine the effects of monetary policy shocks,
- study the role of optimal monetary policy.
This Paper

- uses a CIA model,

- allows for heterogeneity across industries concerning the way they finance production,

in order to:

- explore the effects of productivity shocks,

- examine the effects of monetary policy shocks,

- study the role of optimal monetary policy.
This Paper

The household decides

▶ how much to work,

▶ how much to consume of two goods produced by two industries,

▶ the supply of loanable funds, also affected by monetary transfer.
This Paper

The household decides

- how much to work,
- how much to consume of two goods produced by two industries,
- the supply of loanable funds, also affected by monetary transfer.
This Paper

The household decides

- how much to work,
- how much to consume of two goods produced by two industries,
- the supply of loanable funds, also affected by monetary transfer.
This Paper

The household decides

- how much to work,
- how much to consume of two goods produced by two industries,
- the supply of loanable funds, also affected by monetary transfer.

The last two decisions are subject to cash-in-advance constraints.
This Paper

Two industries:

- **Cash-constrained firms:**
 - need to borrow in order to operate,
 - pay interest.
- **Cash-unconstrained firms:**
 - operate as usually.
This Paper

Two industries:

- Cash-constrained firms:
 - need to borrow in order to operate,
 - pay interest.
- Cash-unconstrained firms:
 - operate as usually.
This Paper

Two industries:

- **Cash-constrained firms:**
 - need to borrow in order to operate,
 - pay interest.

- **Cash-unconstrained firms:**
 - operate as usually.
This Paper

Two industries:

- Cash-constrained firms:
 - need to borrow in order to operate,
 - pay interest.

- Cash-unconstrained firms:
 - operate as usually.
This Paper

Two industries:

- **Cash-constrained firms:**
 - need to borrow in order to operate,
 - pay interest.
- **Cash-unconstrained firms:**
 - operate as usually.
Preview of Main Findings

Negative Productivity Shock:

- The cash-unconstrained firms decrease labor demand.
- The cash-constrained firms increase labor demand. This is because:
 - wage decreased, lower wage to finance.
Preview of Main Findings

Negative Productivity Shock:

- The cash-unconstrained firms decrease labor demand.
- The cash-constrained firms increase labor demand. This is because:
 - wage decreased, lower wage to finance.
Preview of Main Findings

Negative Productivity Shock:

- The cash-unconstrained firms decrease labor demand.
- The cash-constrained firms increase labor demand. This is because:
 - wage decreased, lower wage to finance.
Preview of Main Findings

Negative Productivity Shock:

- The cash-unconstrained firms decrease labor demand.
- The cash-constrained firms increase labor demand. This is because:
 - wage decreased, lower wage to finance.

So the cash-constrained firms get larger and the cash-unconstrained firms become smaller.
Preview of Main Findings

Increase in Money Supply:

- Good news for cash-constrained firms.
- Supply of loanable funds increases, lower interest rate.
- Production and employment of cash-constrained firms increases.
Preview of Main Findings

Increase in Money Supply:

- Good news for cash-constrained firms.
- Supply of loanable funds increases, lower interest rate.
- Production and employment of cash-constrained firms increases.
Preview of Main Findings

Increase in Money Supply:

- Good news for cash-constrained firms.
- Supply of loanable funds increases, lower interest rate.
- Production and employment of cash-constrained firms increases.
Preview of Main Findings

Increase in Money Supply:

- Good news for cash-constrained firms.
- Supply of loanable funds increases, lower interest rate.
- Production and employment of cash-constrained firms increases.

This would make cash-constrained firms larger.
Preview of Main Findings

Optimal Monetary Policy

- Tight in response to negative productivity shock.
- Expansionary in response to positive productivity shock.
Preview of Main Findings

Optimal Monetary Policy

- Tight in response to negative productivity shock.
- Expansionary in response to positive productivity shock.
Literature

- Effects of cycle: Moscarini and Postel-Vinay (*AER*, 2012)
- Effects of Monetary shocks: Gertler and Gilchrist (1994, *QJE*)
- Costly state verification, idiosyncratic shocks and monetary policy: Carlstrom, Fuerst and Paustian (2010, *JMCB*), De Fiore, Teles and Tristani (2011, *AEJ : Macro*)
The Model

Two Industries:

- Firms in cash unconstrained industry finance operation through credit, and produce $f^u(h^u, \theta) = \theta h^u$ units of good, using h^u units of labor.

- Firms in cash constrained industry borrow to operate, and pay interest R. They produce $f^c(h^c, \theta) = \theta h^c$ units of good, hiring h^c units of labor.
The Model

Two Industries:

- Firms in cash unconstrained industry finance operation through credit, and produce \(f^u(h^u, \theta) = \theta h^u \) units of good, using \(h^u \) units of labor.

- Firms in cash constrained industry borrow to operate, and pay interest \(R \). They produce \(f^c(h^c, \theta) = \theta h^c \) units of good, hiring \(h^c \) units of labor.
The Model

- Infinitely lived large family seeking to maximize:

\[E_0 \left\{ \sum_{t=0}^{\infty} \beta^t [U(c_t^1) + V(c_t^2) - D(H_t)] \right\}, \quad (1) \]

where:

- \(U' > 0, V' > 0, D' > 0, D'' > 0, U'' < 0, V'' < 0. \)
The Model graphical

Framework
Motivation
The Model Economy
Results
Optimal Monetary Policy
Conclusions

Anastasia S. Zervou
Texas A&M University

Firms’ Finance, Cyclical Sensitivity, and the Role of Monetary Policy
Timing

- Receive m_t.
- Decide fraction x_t for consumption.
- Decide fraction n_t for loans.

Productivity shock θ_t, and monetary shock μ_t are realized.

Family separate:
- Shopper (x_t): goods market.
- Worker: labor market.

Family meet: consumes and keeps next period’s money holdings.

Financial transactor (n_t): loanable funds market. There, gets monetary transfer τ_t.
CIA Constraints

- In transactions (γ):
 \[m \geq x + n \]

- In consumption (γ_1):
 \[x \geq p^1 c^1 + p^2 c^2 \]

- In the supply of loanable funds (γ_2):
 \[n + \mu \geq b^s \]
Budget Constraint

Family’s Budget Constraint (δ):

$$m + \mu + (1 + R)b^s + wH + \pi \geq m'(1 + \mu) + p^1 c^1 + p^2 c^2 + b^s. \quad (5)$$

Note:

$$[(m - x - n) + (x - p^1 c^1 - p^2 c^2) + wH + n(1 + R) + \pi] +$$

$$[\left(n + \mu - b^s\right) + b^s(1 + R) - n(1 + R)] \geq m'.$$
First Order Conditions

With respect to x and n:

$$\gamma = E_{\{\theta, \mu\}}(\gamma_1) = E_{\{\theta, \mu\}}(\gamma_2) \quad (6)$$

With respect to c^1, c^2:

$$\frac{U'(c^1)}{p^1} = \frac{V'(c^2)}{p^2} = \gamma_1 + \delta \quad (7)$$

With respect to H:

$$\frac{D'(H)}{w} = \delta \quad (8)$$

With respect to b^s:

$$\gamma_2 = \delta R \quad (9)$$

With respect to m':

$$-\delta(1 + \mu) + \beta \gamma' + \beta E_{\{\theta', \mu'\}}(\delta') = 0. \quad (10)$$
Firms Profit Maximization

- firms in unconstrained industry:
 \[\pi^u = p_2 \theta h^u - wh^u, \]
 FOC:
 \[p^2 \theta = w. \] \hspace{1cm} (11)

- firms in constrained industry:
 \[\pi^c = p_1 \theta h^c - wh^c - Rb^d, \]
 or
 \[\pi^c = p_1 \theta h^c - (1 + R)wh^c, \]
 FOC:
 \[p^1 \theta = w(1 + R). \] \hspace{1cm} (12)

- A price wedge:
 \[p^1 = (1 + R)p^2. \] \hspace{1cm} (13)
Equilibrium

- The goods markets clear (Note: $H^c = \lambda h^c$ and $H^u = \kappa h^u$):

 $$c^1 = \theta H^c,$$

 $$c^2 = \theta H^u.$$ (14)

- The labor market clears:

 $$H^c + H^u = H.$$ (16)

- The loanable funds market clears:

 $$wH^c = b^s.$$ (17)

- The money market clears:

 $$m = m' = 1.$$ (18)

- and from (17), (18) and (2):

 $$1 + \mu - x = wH^c.$$ (19)
Equilibrium—More

- In equilibrium $m = m' = 1$, so the decision of x, n depends only on the expectation of the economy’s shocks.
- Assuming iid, uncorrelated shocks, then x, n is the same every period.
- Then, from FOC:

$$
\beta E_{\{\theta', \mu'\}} \left[\frac{U'(c'^1)}{p'^1} \right] = \beta E_{\{\theta', \mu'\}} \left[\frac{V'(c'^2)}{p'^2} \right] = \beta \psi = (1 + \mu) \frac{D'(H)}{w}
$$

(20)
Equilibrium-More

- From (7):
 \[\frac{U'(c^1)}{V'(c^2)} = \frac{p_1}{p_2}. \]
 \[(21) \]

- Equations (3) with equality, (11), (12), (14), (15), (16), (19), (20) and (21) solve for 9 unknowns.
Negative Productivity Shock

- Bad for both industries: $c^1 = \theta H^c$, $c^2 = \theta H^u$,
- Unconstrained industry decreases labor demand and decreases wage.
- Constrained industry finds the lower wage attractive.
- Constrained industry increases labor demand.
Negative Productivity Shock

- Bad for both industries: \(c^1 = \theta H^c, \ c^2 = \theta H^u, \)
- Unconstrained industry decreases labor demand and decreases wage.
- Constrained industry finds the lower wage attractive.
- Constrained industry increases labor demand.
Negative Productivity Shock

- Bad for both industries: \(c^1 = \theta H^c, \ c^2 = \theta H^u, \)
- Unconstrained industry decreases labor demand and decreases wage.
- Constrained industry finds the lower wage attractive.
- Constrained industry increases labor demand.
Negative Productivity Shock

- Bad for both industries: $c^1 = \theta H^c$, $c^2 = \theta H^u$,
- Unconstrained industry decreases labor demand and decreases wage.
- Constrained industry finds the lower wage attractive.
- Constrained industry increases labor demand.
Negative Productivity Shock

\[\frac{dc^1}{d\theta} > 0, \quad \frac{dc^2}{d\theta} > 0, \quad \frac{dp^1}{d\theta} < 0, \quad \frac{dp^2}{d\theta} < 0, \quad \frac{d(1+R)}{d\theta} < 0, \quad \frac{dw}{d\theta} > 0, \quad \frac{dH^c}{d\theta} < 0, \]

\[\frac{dH^u}{d\theta} > 0, \quad \frac{dH}{d\theta} > 0. \]
Positive Monetary Shock: Homogenous Firms

- All firms cash constrained.
- Positive monetary shock: Good news.
- Supply of loanable funds increases: $1 + \mu - x = wH$.
- Interest rate decreases in order firms to accept extra cash.
- Firms increase production and employment.
- Real wage increases in order workers to work more.
- Prices decrease in order consumers buy more good.
Positive Monetary Shock: Homogenous Firms

- All firms cash constrained.
- Positive monetary shock: Good news.
 - Supply of loanable funds increases: $1 + \mu - x = wH$.
 - Interest rate decreases in order firms to accept extra cash.
 - Firms increase production and employment.
 - Real wage increases in order workers to work more.
 - Prices decrease in order consumers buy more good.
Positive Monetary Shock: Homogenous Firms

- All firms cash constrained.
- Positive monetary shock: Good news.
- Supply of loanable funds increases: \(1 + \mu - x = wH\).
- Interest rate decreases in order firms to accept extra cash.
- Firms increase production and employment.
- Real wage increases in order workers to work more.
- Prices decrease in order consumers buy more good.
Positive Monetary Shock: Homogenous Firms

- All firms cash constrained.
- Positive monetary shock: Good news.
- Supply of loanable funds increases: $1 + \mu - x = wH$.
- Interest rate decreases in order firms to accept extra cash.
- Firms increase production and employment.
- Real wage increases in order workers to work more.
- Prices decrease in order consumers buy more good.
Positive Monetary Shock: Homogenous Firms

- All firms cash constrained.
- Positive monetary shock: Good news.
- Supply of loanable funds increases: $1 + \mu - x = wH$.
- Interest rate decreases in order firms to accept extra cash.
- Firms increase production and employment.
- Real wage increases in order workers to work more.
- Prices decrease in order consumers buy more good.
Positive Monetary Shock: Homogenous Firms

- All firms cash constrained.
- Positive monetary shock: Good news.
- Supply of loanable funds increases: $1 + \mu - x = wH$.
- Interest rate decreases in order firms to accept extra cash.
- Firms increase production and employment.
- Real wage increases in order workers to work more.
- Prices decrease in order consumers buy more good.
Positive Monetary Shock: Homogenous Firms

- All firms cash constrained.
- Positive monetary shock: Good news.
- Supply of loanable funds increases: $1 + \mu - x = wH$.
- Interest rate decreases in order firms to accept extra cash.
- Firms increase production and employment.
- Real wage increases in order workers to work more.
- Prices decrease in order consumers buy more good.
Positive Monetary Shock: Heterogenous Firms

- **Good news for cash constrained firms.**
- Supply of loanable funds increases: \(1 + \mu - x = wH^c \).
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: $1 + \mu - x = wH^c$.
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: \(1 + \mu - x = wH^c \).
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.
 Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: \(1 + \mu - x = wH^c \).
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: $1 + \mu - x = wH^c$.
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.

Case 1:

- Given lower interest, constrained firms might decrease their price, might increase wage.
- Then, unconstrained firms might decrease employment and production, and increase their price.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: $1 + \mu - x = wH^c$.
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.

Case 1:
- Given lower interest, constrained firms might decrease their price, might increase wage.
- Then, unconstrained firms might decrease employment and production, and increase their price.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: $1 + \mu - x = wH^c$.
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.

Case 2:
- Given lower interest, constrained firms might decrease their price, might increase wage.
- Then, unconstrained firms might increase employment and production, and increase their price.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: $1 + \mu - x = wH^c$.
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.

Case 2:

- Given lower interest, constrained firms might decrease their price, might increase wage.
- Then, unconstrained firms might increase employment and production, and increase their price.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: \(1 + \mu - x = wH^c \).
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.

Case 3:

- Given lower interest, constrained firms might decrease their price, might decrease wage.
- Then, unconstrained firms might decrease employment and production, and decrease their price.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: $1 + \mu - x = wH^c$.
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.

Case 3:
- Given lower interest, constrained firms might decrease their price, might decrease wage.
- Then, unconstrained firms might decrease employment and production, and decrease their price.
Positive Monetary Shock: Heterogenous Firms

- Effects on nominal wages, prices of unconstrained firms, employment and production of unconstrained firms, is ambiguous.
 - Empirical evidence (CEE, EER 1997):
 - The aggregate price level initially responds very little.
 - Aggregate output increases.
 - Interest rates initially fall.
 - Real wages increase (weak).
 - Empirical evidence (Gilchrist et al, 2012):
 - In crisis, weak firms increased prices and strong decreased prices.
 - So after good shock, weak firms decrease prices and strong increase prices.
Positive Monetary Shock: Heterogenous Firms

- Effects on nominal wages, prices of unconstrained firms, employment and production of unconstrained firms, is ambiguous.

- Empirical evidence (CEE, EER 1997):
 - The aggregate price level initially responds very little.
 - Aggregate output increases.
 - Interest rates initially fall.
 - Real wages increase (weak).

- Empirical evidence (Gilchrist et al, 2012):
 - In crisis, weak firms increased prices and strong decreased prices.
 - So after good shock, weak firms decrease prices and strong increase prices.
Positive Monetary Shock: Heterogenous Firms

- Effects on nominal wages, prices of unconstrained firms, employment and production of unconstrained firms, is ambiguous.

- Empirical evidence (CEE, EER 1997):
 - The aggregate price level initially responds very little.
 - Aggregate output increases.
 - Interest rates initially fall.
 - Real wages increase (weak).

- Empirical evidence (Gilchrist et al, 2012):
 - In crisis, weak firms increased prices and strong decreased prices.
 - So after good shock, weak firms decrease prices and strong increase prices.
Positive Monetary Shock: Heterogenous Firms

- Good news for cash constrained firms.
- Supply of loanable funds increases: $1 + \mu - x = wH^c$.
- Interest rate decreases in order firms to accept extra cash.
- Cash constrained firms increase employment and production.
- But: Now more degrees of freedom.

Case 2:
- Given lower interest, constrained firms might decrease their price, might increase wage.
- Then, unconstrained firms might increase employment and production, and increase their price.
Optimal Monetary Policy

- Maximize lifetime utility of household.
- FOC:
 \[U'(c^*) = V'(c^*) = \frac{D'(H)}{\theta}. \]
- \[R = 0. \]
Optimal Monetary Policy

- Maximize lifetime utility of household.
- FOC:
 \[U'(c^{*1}) = V'(c^{*2}) = \frac{D'(H)}{\theta}. \]
- \(R = 0. \)
Optimal Monetary Policy

- Maximize lifetime utility of household.
- FOC:
 \[U'(c^*) = V'(c^2) = \frac{D'(H)}{\theta}. \]
- \(R = 0. \)
Optimal Monetary Policy and Productivity Shock

\[\frac{d(1+\mu^*)}{d\theta} > 0. \]

- Monetary policy tightens in response to negative productivity shock.
- Monetary policy expands in response to positive productivity shock.
- Monetary policy works through the allocation of the factors across industries.
- Bad times, not that bad for cash-constrained firms for monetary policy to subsidize them.
- Good times, not too good for cash-constrained firms for monetary policy to tax them.
- Small firms fuel job creation during recessions.
Optimal Monetary Policy and Productivity Shock

- \(\frac{d(1+\mu^*)}{d\theta} > 0 \).
- Monetary policy tightens in response to negative productivity shock.
- Monetary policy expands in response to positive productivity shock.
- Monetary policy works through the allocation of the factors across industries.
- Bad times, not that bad for cash-constrained firms for monetary policy to subsidize them.
- Good times, not too good for cash-constrained firms for monetary policy to tax them.
- Small firms fuel job creation during recessions.
Optimal Monetary Policy and Productivity Shock

- $\frac{d(1+\mu^*)}{d\theta} > 0$.
- Monetary policy tightens in response to negative productivity shock.
- Monetary policy expands in response to positive productivity shock.
- Monetary policy works through the allocation of the factors across industries.
- Bad times, not that bad for cash-constrained firms for monetary policy to subsidize them.
- Good times, not too good for cash constrained firms for monetary policy to tax them.
- Small firms fuel job creation during recessions.
Optimal Monetary Policy and Productivity Shock

- \(\frac{d(1+\mu^*)}{d\theta} > 0. \)
- Monetary policy tightens in response to negative productivity shock.
- Monetary policy expands in response to positive productivity shock.
- Monetary policy works through the allocation of the factors across industries.
- Bad times, not that bad for cash-constrained firms for monetary policy to subsidize them.
- Good times, not too good for cash constrained firms for monetary policy to tax them.
- Small firms fuel job creation during recessions.
Optimal Monetary Policy and Productivity Shock

- $\frac{d(1+\mu^*)}{d\theta} > 0$.
- Monetary policy tightens in response to negative productivity shock.
- Monetary policy expands in response to positive productivity shock.
- Monetary policy works through the allocation of the factors across industries.
- Bad times, not that bad for cash-constrained firms for monetary policy to subsidize them.
- Good times, not too good for cash-constrained firms for monetary policy to tax them.
- Small firms fuel job creation during recessions.
Optimal Monetary Policy and Productivity Shock

- $\frac{d(1+\mu^*)}{d\theta} > 0$.
- Monetary policy tightens in response to negative productivity shock.
- Monetary policy expands in response to positive productivity shock.
- Monetary policy works through the allocation of the factors across industries.
- Bad times, not that bad for cash-constrained firms for monetary policy to subsidize them.
- Good times, not too good for cash constrained firms for monetary policy to tax them.
- Small firms fuel job creation during recessions.
Optimal Monetary Policy and Productivity Shock

- \[
\frac{d(1+\mu^*)}{d\theta} > 0.
\]

- Monetary policy tightens in response to negative productivity shock.
- Monetary policy expands in response to positive productivity shock.
- Monetary policy works through the allocation of the factors across industries.
- Bad times, not that bad for cash-constrained firms for monetary policy to subsidize them.
- Good times, not too good for cash constrained firms for monetary policy to tax them.
- Small firms fuel job creation during recessions.
Conclusions:

- A simple model for exploring links between productivity shocks in a world with cash-constrained and cash-unconstrained firms, and the role of optimal cyclical monetary policy.
- Welfare maximizing optimal monetary policy with new consideration.
- Welfare maximizing optimal monetary policy should react to productivity shocks procyclically.
Conclusions:

- A simple model for exploring links between productivity shocks in a world with cash-constrained and cash-unconstrained firms, and the role of optimal cyclical monetary policy.

- Welfare maximizing optimal monetary policy with new consideration.

- Welfare maximizing optimal monetary policy should react to productivity shocks procyclically.
Conclusions:

- A simple model for exploring links between productivity shocks in a world with cash-constrained and cash-unconstrained firms, and the role of optimal cyclical monetary policy.
- Welfare maximizing optimal monetary policy with new consideration.
- Welfare maximizing optimal monetary policy should react to productivity shocks procyclically.
Thank you!